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Abstract. We present a novel, automated way to find differential paths
for MD5. As an application we have shown how, at an approximate
expected cost of 239 calls to the MD5 compression function, for any
two chosen message prefixes P and P ′, suffixes S and S′ can be con-
structed such that the concatenated values P‖S and P ′‖S′ collide under
MD5. The practical attack potential of this construction of chosen-prefix
collisions is of greater concern than the MD5-collisions that were pub-
lished before. This is illustrated by a pair of MD5-based X.509 certifi-
cates one of which was signed by a commercial Certification Authority
(CA) as a legitimate website certificate, while the other one is a cer-
tificate for a rogue CA that is entirely under our control (cf. http://
www.win.tue.nl/hashclash/rogue-ca/). Other examples, such as MD5-
colliding executables, are presented as well. More details can be found
on http://www.win.tue.nl/hashclash/ChosenPrefixCollisions/.

1 Introduction

Cryptographic hash functions. Modern information security methods heavily
rely on cryptographic hash functions, functions that map bitstrings of arbitrary
length to fixed-length bitstrings in such a way that a number of security re-
lated conditions is satisfied. Commonly used cryptographic hash functions are
MD5, SHA-1, and SHA-256, mapping their inputs to fixed-lengths outputs of
128, 160, and 256 bits, respectively. We refer to [21] for a description of the gen-
eral design principle of these hash functions and of the security properties that
cryptographic hash functions are supposed to satisfy. One of these properties is
collision resistance: it should be practically infeasible to find two different inputs
that have the same hash value. The collision resistance of MD5 is the focus of
this article.

Previous results on collision attacks for MD5. In August 2004 at the rump ses-
sion of the annual Crypto conference in Santa Barbara, Xiaoyun Wang (cf. [31])
presented a pair of two-block messages that collide under MD5. The details of
their attack construction were presented by Wang and Yu in [34]. It describes a
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manually found differential path for MD5 and introduces the concept of near-
collision blocks: a pair of input blocks that results in specifically targeted output
differences. It allows computation of a new collision in a few hours of CPU time.
Improved versions of these attacks are commented on at the end of this section.

Impact of previous results. Although Wang’s random looking collisions by them-
selves do not pose any danger, it was shown in [14] and [22] how those original
collisions can be used to mislead integrity checking software and replace benign
files with malicious versions without detection. Furthermore, it was immediately
clear that any value can be used for the IHV (in this paper the chaining vari-
able will be denoted by IHV, for Intermediate Hash Value) at the beginning
of the two-block collision search, not just MD5’s initial value as in their exam-
ple collision. This freedom to choose the IHV allowed several authors to use
Wang’s attack construction for slightly more ulterior purposes, e.g. by inserting
both collision blocks in different Postscript documents that collide under MD5
(cf. [7]).

None of these developments in the collision attacks for MD5 spoke in favor of
continued usage of MD5, but the potential for abuse of these types of collisions
was limited. Initially, serious misuse was believed to be prevented by the lack of
control over the contents of the collision blocks. In [18] it was shown, however,
that for any pair of meaningless data (M,M ′) a suffix T can easily be found such
that both concatenations M‖T and M ′‖T are fully meaningful. This allows the
following attack construction. First, for any meaningful common prefix P , colli-
sion blocks (M,M ′) may be constructed using Wang’s approach such that P‖M
and P‖M ′ collide under MD5. Even though P‖M and P‖M ′ can be expected to
be partially meaningless, an appendage T can subsequently be calculated such
that both P‖M‖T and P‖M ′‖T are fully meaningful. Furthermore, due to the
iterative structure of MD5, they also still collide under MD5. This shows that
the argument that Wang’s MD5-collisions are mostly harmless because of their
lack of structure is in principle invalid. The above attack construction allowed
the realization of two different X.509 certificates with identical Distinguished
Names and identical MD5-based signatures but different public keys (cf. [18]).
Such pairs of certificates theoretically violate the security of the X.509 Pub-
lic Key Infrastructure, however the limitation to identical Distinguished Names
does not allow abuse in practice.

Scenarios causing more serious threats did not emerge due to a severe lim-
itation of this collision attack, namely that both colliding messages must have
identical IHVs at the beginning of the collision blocks. This requirement is most
naturally fulfilled by making the documents identical up to that point. There-
fore, we call such collisions identical-prefix collisions. In the above example, P
would be the identical prefix.

New contributions. The most important contribution of this paper is the removal
of the identical prefix condition, a result that we originally presented at Euro-
crypt 2007 (cf. [29]), and of which a considerably improved version was presented
at Crypto 2009 (cf. [30]). We show how any pair of IHVs can be made to collide
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under MD5 by appending properly chosen collision blocks. More precisely, we
show how, for any two chosen message prefixes P and P ′, suffixes S and S′ can
be constructed such that the concatenated values P‖S and P ′‖S′ collide under
MD5. Such collisions will be called chosen-prefix collisions (though different-
prefix collisions would have been appropriate as well). Our attack construction
is based on a “birthday” search combined with a novel, automated way to find
differential paths for MD5. It has an approximate expected cost of 239 calls to
the MD5 compression function. In practical terms, this translates to about a day
on a standard quad-core PC per chosen-prefix collision. This notable improve-
ment over the 6 months on thousands of PCs for a single chosen-prefix collision
that we reported earlier in the Eurocrypt 2007 paper [29], was triggered by the
application presented in the Crypto 2009 paper [30].

Significance and impact of the new contributions. Chosen-prefix collisions have
a greater threat potential than identical-prefix ones. Using the diamond con-
struction from Kelsey and Kohno (cf. [15]) along with chosen-prefix collisions,
any number of documents of one’s choice can be made to collide after extending
them with relatively short and innocuously looking appendages that can eas-
ily remain hidden to the unsuspicious reader when popular document formats
(such as PDF, Postscript, or MS Word) are used. We illustrate this in Section 5.3
with a Nostradamus attack to predict the winner of the 2008 US Presidential
elections. Implementing a Herding attack we constructed 12 different but MD5-
colliding PDF files, each predicting a different winner. Their common hash serves
as commitment to our prediction of the outcome. Our prediction was correct.

Similarly, chosen-prefix collisions can be used to mislead, for instance, down-
load integrity verification of code signing schemes, by appending collision blocks
to executables. Details, and how it improves upon previous such constructions,
can be found in Section 5.4.

The most convincing application of MD5-collisions, however, would target the
core of the Public Key Infrastructure (PKI) and truly undermine its security by
affecting authenticity of users (cf. Section 4.1 of [29]). The most obvious way
to realize this would be by constructing colliding certificates, i.e., certificates for
which the to-be-signed parts have the same cryptographic hash and therefore
the same digital signature. This is undesirable, because the signature of one of
the to-be-signed parts, as provided by a Certification Authority (CA), is also a
valid signature for the other to-be-signed part. Thus, this gives rise to a pair of
certificates, one of which is legitimate, but the other one is a rogue certificate.

Constructing colliding certificates that affect authenticity seemed to be out
of reach, however. As mentioned in the Eurocrypt 2007 paper [29] that intro-
duced chosen-prefix collisions, these collisions allow us to construct two X.509
certificates with different Distinguished Names and different public keys, but
identical MD5-based signatures. This improves upon the construction from [18]
mentioned above, but is hardly more threatening due to two problems. In the
first place, we need full control over the prefixes of the certificates’ to-be-signed
parts, to be able to calculate the collision blocks. When using a ‘real life’ CA,
however, that CA has final control over the contents of one of the to-be-signed
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parts: in particular, it inserts a serial number and a validity period. Furthermore,
our construction as in [29] results in 8192-bit RSA moduli, which is quite a bit
longer than the 2048-bit upper bound that is enforced by some CAs.

It was pointed out to us by three of our coauthors on the Crypto 2009 follow-
up paper [30], that there are circumstances where, with sufficiently high prob-
ability, the first of the above two problems can be circumvented. Naively, one
would expect that a somewhat more extensive search would suffice to address
the remaining problem of reducing the length of the RSA moduli to a generally
acceptable 2048 bits. Substantially more extensive improvements to all stages of
the original chosen-prefix construction from the Eurocrypt 2007 paper [29] were
required, though. This is a nice illustration of scientific progress being driven
by practical applications. Furthermore, more computational power had to be
brought to bear to deal with the timing restrictions of reliably predicting the
CA’s contribution. Ultimately this led to the rogue CA certificate mentioned
in the abstract, generated in about a day on a cluster of 215 PlayStation 3
game consoles. From the heartwarming industry reception of our rogue CA con-
struction, which is further described in Section 5.2, it must be concluded that
we finally managed to present a sufficiently convincing argument to discontinue
usage of MD5 for digital signature applications.

Very brief summary of new techniques. The possibility of chosen-prefix collisions
was mentioned already in [9, Section 4.2 case 1] and, in the context of SHA-1,
in [4] and on http://www.iaik.tugraz.at/content/research/krypto/sha1/.
This paper is an updated version of the Eurocrypt 2007 paper [29], incorporating
the improvements mentioned above and as described in [28] and in the Crypto
2009 paper [30]. The new applications mentioned above have been realized using
the following main improvements. In the first place we introduce an extended
family of differential paths compared to [29]. Secondly, we use a more powerful
birthday search procedure which reduces the overall complexity from 250 to
239 MD5 compression function calls. This procedure also introduces a time-
memory trade-off and more flexibility in the birthday search complexity to allow
for variability in the expected number of near-collision blocks. Finally, we have
a much improved implementation exploiting the wide variety of features of a
cluster of PlayStation 3 game consoles.

Outline of article. MD5 and the Merkle-Damg̊ard construction on which it is
based are described in detail in Section 2. Section 3 gives a high level overview of
our method to construct chosen-prefix collisions. Section 4 presents the method
in full detail. The three proof of concept applications are presented in Section 5.

Other improvements of Wang’s original collision finding method. Another ap-
plication of our automated differential path finding method is a speedup of the
identical-prefix collision attack by Wang et al. In combination with the idea of
tunnels from Klima [17] collisions can be found in 225 MD5 compression func-
tion calls, see [28]. Source and binary code for this improvement is available on
http://www.win.tue.nl/hashclash/). Note that Xie, Liu and Feng [35] used
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a different method for identical-prefix collisions, reaching a complexity of 221

MD5 compression function calls, and that in the meantime identical-prefix col-
lisions for MD5 can be found in 216 MD5 compression function calls [30]. This
new identical-prefix collision attack is used in Section 4.8 to construct very short
chosen-prefix collisions with complexity of about 253.2 MD5 compressions, where
the collision-causing suffixes are only 596 bits long instead of several thousands
of bits.

Summary of old and new results. In Table 1-1 we present a historical overview
of the decline in complexity of MD5 and SHA-1 collision finding. For historical
interest we include claims that were presented but that have never been pub-
lished (indicated by “u: ...” in Table 1-1) and a claim that has been withdrawn
(indicated by “w: ...” in Table 1-1). It clearly illustrates that attacks against
MD5 keep getting better, and that the situation around SHA-1 is unclear. Not
reflected in the table is the fact that already in 1993 it was known that there
was serious trouble with MD5, based on collisions in its compression function
(cf. [2], [8]). We leave any speculation about the future of SHA-1 cryptanalysis
to the knowledgeable reader.

Table 1-1. Collision complexities – Historical overview.

MD5 SHA-1
year identical-prefix chosen-prefix identical-prefix chosen-prefix

pre-2004 264 (trivial) 264 (trivial) 280 (trivial) 280 (trivial)
2004 240 [31], [34]
2005 237 [16] 269 [33]

u: 263 [32]
2006 232 [17], [27] 249 [29] u: 280−ε [25]
2007 225 [28] 242 [28] u: 261 [20]
2008 221 [35]
2009 216 [30] 239 [30] w: 252 [19]

Complexity is given as the number of calls to the relevant compression function (cf.
Section 2). The figures are optimized for speed, i.e., for collisions using any number of
near-collision blocks. For other collision lengths the complexities may differ.

2 Merkle-Damg̊ard and MD5

In this section we describe the Merkle-Damg̊ard construction in Section 2.1, then
we fix some notation in Section 2.2 and give a description of MD5 in Section 2.3.

2.1 Merkle-Damg̊ard

The well known Merkle-Damg̊ard construction describes exactly how to con-
struct a hash function based on a compression function with fixed-size inputs in
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an iterative structure as is depicted in Figure 1. Since it has been proven that
the hash function is collision resistant if the underlying compression function is
collision resistant, the majority of all the currently used hash functions are based
on this Merkle-Damg̊ard construction. The construction builds a hash function
based on a compression function that takes two fixed-size inputs, namely a chain-
ing value denoted by IHV and a message block, and outputs a new IHV. For
instance, MD5’s compression function operates on an IHV of bit length 128 and
a message block consisting of 512 bits. An input message is first padded with
a single 1 bit followed by a number X of 0 bits and lastly the original message
length encoded in 64 bits. The number X of 0 bits to be added is defined as
the lowest possible number so that the entire padded message bit length is an
integer multiple of 512. The padded message is now split into N blocks of size
exactly 512 bits. The hash function starts with a fixed public value for IHV0

called the IV (Initial Value). For each subsequent message block Mi it calls the
compression function with the current IHVi and the message block Mi and stores
the output as the new IHVi+1. After all blocks are processed it outputs the last
IHVN after an optional finalization transform.

Fig. 1. Merkle-Damg̊ard construction

2.2 Preliminaries

MD5 operates on 32-bit words (v31v30 . . . v0) with vi ∈ {0, 1}, that are identified

with elements v =
∑31
i=0 vi2

i of Z/232Z (the ring of integers modulo 232, repre-
sented by the set of least non-negative residues {0, 1, . . . , 232−1}) and referred to
as 32-bit integers. In this paper we switch freely between these representations.

A binary signed digit representation (BSDR) for a 32-bit word X is defined
as (ki)

31
i=0, where

X =

31∑
i=0

2iki, ki ∈ {−1, 0,+1}.
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Many different BSDRs exist for any non-zero X. The weight of a BSDR is
the number of non-zero ki’s. A particularly useful BSDR is the Non-Adjacent
Form (NAF), where no two non-zero ki’s are adjacent. The NAF is not unique
since we work modulo 232 (making k31 = +1 equivalent to k31 = −1), but
uniqueness of the NAF can be enforced by choosing k31 ∈ {0,+1}. Among the
BSDRs of an integer, the NAF has minimal weight (cf. [5]). It can easily be

computed as NAF(n) = (ai − bi)31i=0 where ai, bi ∈ {0, 1} such that
∑31
i=0 ai2

i =

n+ bn2 c mod 232 and
∑31
i=0 bi2

i = bn2 c .
Integers are denoted in hexadecimal as, for instance, 1E16 and in binary as

000111102. For bitstrings X and Y we use the following notation:

– X ∧ Y is the bitwise AND of X and Y ;
– X ∨ Y is the bitwise OR of X and Y ;
– X ⊕ Y is the bitwise XOR of X and Y ;
– X is the bitwise complement of X;

for X,Y ∈ Z/232Z:

– X[i] is the i-th bit of the regular binary representation of X;
– X + Y resp. X − Y is the addition resp. subtraction modulo 232;
– RL(X,n) (resp. RR(X,n)) is the cyclic left (resp. right) rotation of X by n

bit positions:

RL(10100100 . . . 000000012, 5) = 100 . . . 00000001101002;

and for a 32-digit BSDR X:

– X[[i]] is the i-th signed bit of X;
– RL(X,n) (resp. RR(X,n)) is the cyclic left (resp. right) rotation of X by n

positions.
– w(X) is the weight of X.

For chosen message prefixes P and P ′ we seek suffixes S and S′ such that
the messages P‖S and P ′‖S′ collide under MD5. In this paper any variable
X related to the message P‖S or its MD5 calculation, may have a correspond-
ing variable X ′ related to the message P ′‖S′ or its MD5 calculation. Further-
more, for such a ‘matched’ variable X ∈ Z/232Z we define δX = X ′ − X and
∆X = (X ′[i] − X[i])31i=0, which is a BSDR of δX. For a matched variable Z
that consist of tuples of 32-bit integers, say Z = (z1, z2, . . .), we define δZ as
(δz1, δz2, . . .).

2.3 Description of MD5

2.3.1 MD5 overview
MD5 follows the Merkle-Damg̊ard construction and works as follows, cf. [26]:

1. Padding. Pad the message: first a ‘1’-bit, next the least number of ‘0’ bits
to make the bitlength equal to 448 mod 512, and finally the bitlength of the
original unpadded message as a 64-bit little-endian integer. As a result the
total bitlength of the padded message is 512N for a positive integer N .
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2. Partitioning. Partition the padded message into N consecutive 512-bit blocks
M1, M2, . . . ,MN .

3. Processing. To hash a message consisting of N blocks, MD5 goes through
N + 1 states IHVi, for 0 ≤ i ≤ N , called the intermediate hash values. Each
intermediate hash value IHVi consists of four 32-bit words ai, bi, ci, di. For
i = 0 these are fixed public values:

(a0, b0, c0, d0) = (6745230116, EFCDAB8916, 98BADCFE16, 1032547616).

For i = 1, 2, . . . , N intermediate hash value IHVi is computed using the MD5
compression function described in detail below:

IHVi = MD5Compress(IHVi−1,Mi).

4. Output. The resulting hash value is the last intermediate hash value IHVN ,
expressed as the concatenation of the hexadecimal byte strings of the four
words aN , bN , cN , dN , converted back from their little-endian representation.

2.3.2 MD5 compression function
The input for the compression function MD5Compress(IHV, B) consists of an
intermediate hash value IHV = (a, b, c, d) and a 512-bit message block B. The
compression function consists of 64 steps (numbered 0 to 63), split into four
consecutive rounds of 16 steps each. Each step t uses modular additions, a left
rotation, and a non-linear function ft, and involves an Addition Constant ACt
and a Rotation Constant RCt. These are defined as follows (see also Table A-1
in Appendix A):

ACt =
⌊
232 |sin(t+ 1)|

⌋
, 0 ≤ t < 64,

(RCt, RCt+1, RCt+2, RCt+3) =


(7, 12, 17, 22) for t = 0, 4, 8, 12,

(5, 9, 14, 20) for t = 16, 20, 24, 28,

(4, 11, 16, 23) for t = 32, 36, 40, 44,

(6, 10, 15, 21) for t = 48, 52, 56, 60.

The non-linear function ft depends on the round:

ft(X,Y, Z) =


F (X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z) for 0 ≤ t < 16,

G(X,Y, Z) = (Z ∧X)⊕ (Z ∧ Y ) for 16 ≤ t < 32,

H(X,Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ t < 48,

I(X,Y, Z) = Y ⊕ (X ∨ Z) for 48 ≤ t < 64.

(1)

The message block B is partitioned into sixteen consecutive 32-bit words m0,
m1, . . ., m15 (with little-endian byte ordering), and expanded to 64 words Wt,
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for 0 ≤ t < 64, of 32 bits each (see also Table A-1 in Appendix A):

Wt =


mt for 0 ≤ t < 16,

m(1+5t) mod 16 for 16 ≤ t < 32,

m(5+3t) mod 16 for 32 ≤ t < 48,

m(7t) mod 16 for 48 ≤ t < 64.

We follow the description of the MD5 compression function from [12] because its
‘unrolling’ of the cyclic state facilitates the analysis. For each step t the compres-
sion function algorithm maintains a working register with 4 state wordsQt,Qt−1,
Qt−2 andQt−3 and calculates a new state wordQt+1. With (Q0, Q−1, Q−2, Q−3) =
(b, c, d, a), for t = 0, 1, . . . , 63 in succession Qt+1 is calculated as follows:

Ft = ft(Qt, Qt−1, Qt−2),

Tt = Ft +Qt−3 +ACt +Wt,

Rt = RL(Tt, RCt),

Qt+1 = Qt +Rt.

(2)

After all steps are computed, the resulting state words are added to the inter-
mediate hash value and returned as output:

MD5Compress(IHV, B) = (a+Q61, b+Q64, c+Q63, d+Q62). (3)

3 An overview of chosen-prefix collisions for MD5

Given two arbitrary chosen messages, our purpose is to find appendages such
that the extended messages collide under MD5. In this section we give a summary
of our method.

Given the two arbitrary messages, we first apply padding to the shorter of
the two, if any, to make their lengths equal. This is unavoidable, because Merkle-
Damg̊ard strengthening, involving the message length, is applied after the last
message bits have been processed. We impose the additional requirement that
both resulting messages are a specific number of bits (such as 64 or 96) short of
a whole number of blocks. In principle this can be avoided, but it leads to an
efficient method that allows relatively easy presentation. All these requirements
can easily be met, also in applications with stringent formatting restrictions.

Given this message pair, we modify a suggestion by Xiaoyun Wang (private
communication) by finding a pair of k-bit values that, when appended to the last
incomplete message blocks, results in a specific form of difference vector between
the IHVs after application of the MD5 compression function to the extended
message pair. Finding the k-bit appendages can be done using a birthday search
procedure.

The specific form of difference vector between the IHVs that is aimed for
during the birthday search is such that the difference pattern can relatively easily
be removed compared to the more or less random difference pattern one may
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expect given two arbitrarily chosen prefixes. Removing the difference pattern is
done by further appending to the messages a sequence of near-collision blocks.
Each pair of near-collision blocks targets a specific subpattern of the remaining
differences. For each such subpattern we use an automated, improved version of
Wang’s original approach to construct a new differential path, as described in
detail in Section 4 below, and subsequently use the differential path to construct
a pair of near-collision blocks. Appending those blocks to the two messages
results in a new difference vector between the new IHVs from which the targeted
subpattern has been eliminated compared to the previous difference vector. The
construction continues as long as differences exist. The above process is depicted
in Figure 2.

Fig. 2. Chosen-prefix collision overview

How the various steps involved in this construction are carried out and how
their parameters are tuned depends on what needs to be optimized. Extensive
birthday searching can be used to create difference patterns that require a small
number of pairs of near-collision blocks. When combined with a properly chosen
large family of differential paths, a single pair of near-collison blocks suffices
to complete the collision right away. However, it may make the actual near-
collision block construction quite challenging, which leads to the intuitively ex-
pected result that finding very short chosen-prefix collision-causing appendages
is relatively costly. On the other side of the spectrum, fast birthday searching
combined with a smaller family of differential paths leads to the need for many
successive pairs of near-collision blocks, each of which can quickly be found:
if one is willing to accept long chosen-prefix collision-causing appendages, the
overall construction can be done quite fast. Between the two extremes almost
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everything can be varied: number of near-collision blocks, their construction time
given the differential path, time to find the full differential path, birthday search
time and space requirements, etc., leading to a very wide variety of ‘optimal’
choices.

The next section contains the details of the various steps in this process, and
how the steps are best glued together depending on the circumstances. Appli-
cation scenarios that impose different restrictions on the chosen-prefix collisions
are then presented in Section 5.

4 Chosen-prefix collision construction for MD5, details

In Section 4.1 an outline of the chosen-prefix collision construction is given; this
includes a short description of the birthday search referred to in Section 3, the
further details of which can be found in Section 4.2. Differential paths are intro-
duced in Section 4.3 and Sections 4.4.1 through 4.4.6 describe how to construct
partial and full differential paths. Collision finding — the search for actual near-
collision blocks that satisfy a given differential path — is treated in Section 4.5
and an optional differential path preprocessing step to improve collision finding
is presented in Section 4.5.3. Section 4.6 gives some details of our implementa-
tions and the complexity analysis is treated in Section 4.7. Finally, we present
a practical chosen-prefix collision attack using a single near-collision block in
Section 4.8.

4.1 Outline of the collision construction

A chosen-prefix collision for MD5 is a pair of messages M and M ′ that consist
of arbitrarily chosen prefixes P and P ′ (not necessarily of the same length),
together with constructed suffixes S and S′, such that M = P‖S, M ′ = P ′‖S′,
and MD5(M) = MD5(M ′). The suffixes consist of three parts: padding bitstrings
Sr, S

′
r, followed by ‘birthday’ bitstrings Sb, S

′
b both of bitlength 64 + k, where

0 ≤ k ≤ 32 is a parameter, followed by bitstrings Sc, S
′
c each consisting of a

sequence of near-collision blocks. The padding bitstrings are chosen such that
the bitlengths of P‖Sr and P ′‖S′r are both equal to 512n− 64− k for a positive
integer n. The birthday bitstrings Sb, S

′
b are determined in such a way that

application of the MD5 compression function to P‖Sr‖Sb and P ′‖S′r‖S′b results
in IHVn and IHV′n, respectively and in the notation from Section 2.3.1, for which
δIHVn has a certain desirable property that is explained below.

The idea is to eliminate the difference δIHVn in r consecutive steps, for
some r, by writing Sc = Sc,1‖Sc,2‖ . . . ‖Sc,r and S′c = S′c,1‖S′c,2‖ . . . ‖S′c,r for r
pairs of near-collision blocks (Sc,j , S

′
c,j) for 1 ≤ j ≤ r. For each pair of near-

collision blocks (Sc,j , S
′
c,j) we need to construct a differential path (see Sec-

tion 4.3 for an informal definition of this term) such that the difference vector
δIHVn+j has lower weight than δIHVn+j−1, until after r pairs we have reached
δIHVn+r = (0, 0, 0, 0).
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Table 4-1. Family of partial differential paths using δm11 = ±2p−10 mod 32.

t δQt δFt δWt δTt δRt RCt

31 ∓2p−10 mod 32

32 0

33 0

34 0 0 ±2p−10 mod 32 0 0 16

35− 60 0 0 0 0 0 ·
61 0 0 ±2p−10 mod 32 ±2p−10 mod 32 ±2p 10

62 ±2p 0 0 0 0 15

63 ±2p 0 0 0 0 21

64 ±2p

+
∑w′

λ=0 sλ2p+21+λ mod 32

Here s0, . . . , sw′ ∈ {−1, 0,+1} and w′ = min(w, 31− p) for a fixed w ≥ 0.
Interesting values for the parameter w are between 2 and 5.

Fix some j and let Sc,j consist of 32-bit words mi, for 0 ≤ i < 16. We fix
fifteen of the δmi as 0 and allow only δm11 to be ±2p−10 mod 32 with as yet
unspecified p with 0 ≤ p < 32 (note the slight abuse of notation, since we define
message block differences without specifying the message blocks themselves).
This was suggested by Xiaoyun Wang because with this type of message differ-
ence the number of bitconditions over the final two and a half rounds can be kept
low, which turns out to be helpful while constructing collisions. For steps t = 34
up to t = 61 the differential path is fully determined by δm11 as illustrated in
Table 4-1. The greater variability for the steps not specified in Table 4-1 does
not need to be fixed at this point. In the last two steps there is a greater degree
of freedom specified by the integer w ≥ 0 that determines which and how many
IHV differences can be eliminated per pair of near-collision blocks. A larger w al-
lows more eliminations by means of additional differential paths. The latter have,
however, a smaller chance to be satisfied because they depend on more (and thus
less likely) carry propagations in ∆Q62 and ∆Q63. This effect contributes to the
complexity of finding the near-collision blocks satisfying the differential paths.
Varying w therefore leads to a trade-off between fewer near-collision blocks and
increased complexity to find them.

This entire construction of the pair of near-collision blocks (Sc,j , S
′
c,j) will

be done in a fully automated way based on the choice of w and the values of
IHVn+j−1 and IHV′n+j−1 as specified. It follows from equation (3) and the rows

for t ≥ 61 in Table 4-1 that a differential path with δm11 = ±2p−10 mod 32 would
add a tuple

±

0, 2p +

w′∑
λ=0

sλ2p+21+λ mod 32, 2p, 2p


to δIHVn+j−1, with notation as in Table 4-1. This is set forth in more detail
below. A sequence of such tuples is too restrictive to eliminate arbitrary δIHVn:
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although differences in the b component can be handled using a number of near-
collision block pairs, only identical differences can be removed from the c and d
components and the a-component differences are not affected at all. We therefore
make sure that δIHVn has the desirable property, as referred to above, that it can
be eliminated using these tuples. This is done in the birthday search step where
birthday bitstrings Sb and S′b are determined such that δIHVn = (0, δb, δc, δc)
for some δb and δc. A δIHVn of this form corresponds to a collision (a, c− d) =
(a′, c′ − d′) between IHVn = (a, b, c, d) and IHV′n = (a′, b′, c′, d′). With a search
space of only 64 bits, such a collision can easily be found. Since the number of
near-collision block pairs and the effort required to find them depends in part
on the number of bit differences between δb and δc, it may pay off to lower that
number at the cost of extending the birthday search space. For instance, for any
k with 0 ≤ k ≤ 32, a collision (a, c−d, c−b mod 2k) = (a′, c′−d′, c′−b′ mod 2k)
with a (64 + k)-bit search space results in δc − δb ≡ 0 mod 2k and thus, on
average, just (32− k)/3 bit differences between δb and δc. Determining such Sb

and S′b can be expected to require on the order of
√

2π2 264+k =
√
π232+(k/2) calls

to the MD5 compression function. More on the birthday search in Section 4.2.

Fig. 3. Above: δIHVs for the colliding certificates with different Distinguished
Names. Below: δIHVs for the colliding website certificate and the rogue CA
certificate.

In the conference version [29] of this paper we used only the differential paths
with δQ64 = ±2p. This forced us to use the harder to satisfy constraint δIHVn =
(0, δc, δc, δc) with a search space consisting of 96 bits and an expected birthda
search cost of

√
π248 MD5 compression function calls, which is the same as choos-

ing k = 32 above. The top part of Figure 3 visualizes the corresponding construc-
tion of near-collision blocks for our colliding certificate example from [29]. The
horizontal lines represent the NAFs of δIHVi for i = 0, 1, . . . , 21. In this example
P‖Sr‖Sb consists of 4 blocks (i.e., n = 4), so that three identical groups of bit
differences are left at i = 4. As shown in Figure 3 each of these groups consists
of 8 bits. The bits in each group of eight are eliminated simultaneously with the
corresponding bits in the other groups of eight by 8 pairs of near-collision blocks,
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so that at i = 12 a full collision is reached. The blocks after that are identical
for the two messages, so that the collision is retained.

The lower part of Figure 3 visualizes the improved construction as used for
the example from Section 5.2. In that example P‖Sr‖Sb consists of 8 blocks (i.e.,
n = 8) and results in a difference vector δIHVn of the form (0, δb, δc, δc). For
any reasonable w, e.g., w = 2, we then select a sequence of differential paths
from the family given in Table 4-1 to eliminate δIHVn. For this example, 3 pairs
of near-collision blocks sufficed to reach a collision. In the next paragraphs we
show how this can be done for general δIHVn of the form (0, δb, δc, δc).

Let, for any such difference vector, δc =
∑
i ki2

i and δb−δc =
∑
i li2

i, where
(ki)

31
i=0 and (li)

31
i=0 are NAFs. If δc 6= 0, let i be such that ki 6= 0. Using a

differential path from Table 4-1 with δm11 = −ki2i−10 mod 32 we can eliminate
the difference ki2

i in δc and δd and simultaneously change δb by

ki2
i +

i+21+w′ mod 32∑
λ=i+21 mod 32

lλ2λ,

where w′ = min(w, 31 − i). Here one needs to be careful that each non-zero lλ
is eliminated only once in the case when multiple i’s allow the elimination of lλ.
Doing this for all non-zero ki’s in the NAF of δc will result in a difference vector
(0, δb̂, 0, 0) where δb̂ may be different from δb, and where the weight w(NAF(δb̂))

may be smaller or larger than w(NAF(δb)). More precisely, δb̂ =
∑31
λ=0 eλlλ2λ,

where eλ = 0 if there exist indices i and j with 0 ≤ j ≤ min(w, 31− i) such that
ki = ±1 and λ = 21 + i+ j mod 32 and eλ = 1 otherwise.

The bits in δb̂ can be eliminated as follows. Let (l̂i)
31
i=0 = NAF(δb̂) and let j be

such that l̂j = ±1 and j− 21 mod 32 is minimal. Then the difference
∑j+w′

i=j l̂i2
i

with w′ = min(w, 31− (j−21 mod 32)) can be eliminated from δb̂ using δm11 =
2j−31 mod 32, which introduces a new difference 2j−21 mod 32 in δb, δc and δd. This
latter difference is eliminated using δm11 = −2j−31 mod 32, which then leads to a
new difference vector (0, δb, 0, 0) with w(NAF(δb)) < w(NAF(δb̂)). The process
is repeated until all differences have been eliminated.

Algorithm 4-1 summarizes the construction of pairs of near-collision blocks
set forth above. The details of the construction are described in the sections
below.

4.2 Birthday search

A birthday search on a search space V is generally performed as in [23] by
iterating a properly chosen deterministic function f : V → V and by assum-
ing that the points of V thus visited form a ‘random walk’, also called a trail.
After approximately

√
π|V |/2 iterations one may expect to have encountered

a collision, i.e., different points x and y such that f(x) = f(y). As the entire
trail can in practice not be stored and to take advantage of parallelism, differ-
ent pseudo-random walks are generated, of which only the startpoints, lengths,
and endpoints are kept. The endpoints are ‘distinguished points’, points with
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Algorithm 4-1 Construction of pairs of near-collision blocks.

Given n-block P‖Sr‖Sb and P ′‖S′r‖S′b, the corresponding resulting IHVn and IHV′n,
and a value for w, a pair of bitstrings Sc, S

′
c is constructed consisting of sequences

of near-collision blocks such that M = P‖Sr‖Sb‖Sc and M ′ = P ′‖S′r‖S′b‖S′c satisfy
MD5(M) = MD5(M ′). This is done by performing in succession steps 1, 2 and 3
below.

1. Let j = 0 and let Sc and S′c be two bitstrings of length zero.
2. Let δIHVn+j = (0, δb, δc, δc). If δc = 0 then proceed to step 3. Let (ki)

31
i=0 =

NAF(δc) and (li)
31
i=0 = NAF(δb − δc). Choose any i for which ki 6= 0 and let

w′ = min(w, 31− i). Perform steps (a) through (f):
(a) Increase j by 1.
(b) Let δSc,j = (δm0, δm1, . . . , δm15) with δm11 = −ki2i−10 mod 32 and δmt = 0

for 0 ≤ t < 16 and t 6= 11.
(c) Given δIHVn+j−1 = IHV′n+j−1 − IHVn+j−1 and δSc,j , construct a few differ-

ential paths based on Table 4-1 with

δQ61 = 0, δQ64 = −ki2i −
i+21+w′ mod 32∑
λ=i+21 mod 32

lλ2λ, δQ63 = δQ62 = −ki2i.

How this is done is described in Sections 4.3 and 4.4.
(d) Find message blocks Sc,j and S′c,j = Sc,j + δSc,j that satisfy one of the con-

structed differential paths. How this is done is described in Section 4.5. If
proper message blocks cannot be found, back up to step (c) to find more
differential paths.

(e) Compute IHVn+j = MD5Compress(IHVn+j−1, Sc,j),
IHV′n+j = MD5Compress(IHV′n+j−1, S

′
c,j), and append Sc,j and S′c,j to Sc

and S′c, respectively.
(f) Repeat step 2

3. Let δIHVn+j = (0, δb̂, 0, 0). If δb̂ = 0 then terminate. Let (li)
31
i=0 = NAF(δb̂).

Choose i such that li 6= 0 and i− 21 mod 32 is minimal and let w′ = min(w, 31−
(i− 21 mod 32)). Perform steps (a) through (e) as above with δm11 = 2i−31 mod 32

as opposed to δm11 = −ki2i−10 mod 32 in step (b) and in steps (c) and (d) with

δQ61 = 0, δQ64 = 2i−21 mod 32 −
i+w′ mod 32∑

λ=i

lλ2λ, δQ63 = δQ62 = 2i−21 mod 32.

Perform steps (a) through (e) again with δm11 = −2i−31 mod 32 in step (b) and

δQ61 = 0, δQ64 = δQ63 = δQ62 = −2i−21 mod 32

in steps (c) and (d). Repeat step 3.
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an easily recognizable bitpattern depending on |V |, available storage and other
characteristics. The average length of a walk is inversely proportional to the frac-
tion of distinguished points in V . Since intersecting walks share their endpoints,
they can easily be detected. The collision point can then be recomputed given
the startpoints and lengths of the two colliding walks. The expected cost (i.e.,
number of evaluations of f) to generate the walks is denoted by Ctr and the
expected cost of the recomputation to determine collision points is denoted by
Ccoll.

In our case the search space V and iteration function f depend on an integer
parameter k ∈ {0, 1, 2, . . . , 32} as explained in Section 4.1. The birthday collision
that we try to find, however, needs to satisfy several additional conditions that
cannot be captured by V , f , or k: the prefixes associated with x and y in a
birthday collision f(x) = f(y) must be different, and the required number of
pairs of near-collision blocks may be at most r when allowing differential paths
with parameter w. The probability that a collision satisfies all requirements
depends not only on the choice of r and w, but also on the value for k, and is
denoted by pr,k,w. As a consequence, on average 1/pr,k,w birthday collisions have
to be found.

Table 4-2. Expected birthday costs for k = 0.

k = 0 w = 0 w = 1 w = 2 w = 3

r p Ctr M p Ctr M p Ctr M p Ctr M

16 5.9 35.27 1MB 1.75 33.2 1MB 1.01 32.83 1MB 1. 32.83 1MB
15 7.2 35.92 1MB 2.39 33.52 1MB 1.06 32.86 1MB 1. 32.83 1MB
14 8.71 36.68 1MB 3.37 34.01 1MB 1.27 32.96 1MB 1.04 32.84 1MB
13 10.45 37.55 1MB 4.73 34.69 1MB 1.78 33.22 1MB 1.2 32.93 1MB
12 12.45 38.55 1MB 6.53 35.59 1MB 2.78 33.71 1MB 1.66 33.16 1MB
11 14.72 39.68 2MB 8.77 36.71 1MB 4.34 34.5 1MB 2.61 33.63 1MB
10 17.28 40.97 11MB 11.47 38.06 1MB 6.54 35.6 1MB 4.18 34.42 1MB
9 20.16 42.4 79MB 14.62 39.64 2MB 9.38 37.02 1MB 6.46 35.56 1MB
8 23.39 44.02 732MB 18.21 41.43 21MB 12.88 38.76 1MB 9.52 37.09 1MB
7 26.82 45.73 8GB 22.2 43.43 323MB 17.02 40.83 9MB 13.4 39.02 1MB
6 31.2 47.92 161GB 26.73 45.69 8GB 21.78 43.22 241MB 18.14 41.4 20MB
5 35. 49.83 3TB 31.2 47.92 161GB 27.13 45.89 10GB 23.74 44.2 938MB
4 34. 49.33 2TB 30.19 47.42 81GB

The columns p, Ctr and M denote the values of − log2(pr,k,w), log2(Ctr(r, k, w)) and the
minimum required memory M such that Ccoll(r, k, w,M) ≤ Ctr(r, k, w), respectively.
See Appendix C for more extensive tables. The values for pr,k,w were estimated from
Algorithm 4-1.

Assuming that M bytes of memory are available and that a single trail re-
quires 28 bytes of storage (namely 96 bits for the start- and endpoint each, and
32 for the length), this leads to the following expressions for the birthday search
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costs:

Ctr(r, k, w) =

√
π · |V |
2pr,k,w

, Ccoll(r, k, w,M) =
2.5 · 28 · Ctr(r, k, w)

pr,k,w ·M
,

where |V | = 264+k, and the factor 2.5 is explained in Section 3 of [23].
For M = 70/pr,k,w as given in the last column of Table 4-2 and in the more

extensive tables in Appendix C, the two costs are equal, and the overall expected
birthday costs becomes 2Ctr(r, k, w). However, if the cost at run time of finding
the trails exceeds the expected cost by a factor λ, then the cost to determine the
resulting birthday collisions can be expected to increase by a factor λ2. Hence,
in practice it is advisable to choose M considerably larger. For ε ≤ 1, using
M = 70/(pr,k,w ·ε) bytes of memory will result in Ccoll ≈ ε ·Ctr and the expected
overall birthday search cost will be about (1+ε) ·Ctr(r, k, w) MD5 compressions.

4.3 Differential paths and bitconditions

In step (e) of Algorithm 4-1, MD5Compress is applied to the respective inter-
mediate hash values IHV and IHV′ and message blocks B and B′. Here, IHV
and IHV′ were constructed in such a way that δIHV has a specific structure, as
set forth above. Furthermore, the blocks B and B′ were constructed such that
δB has a pre-specified low-weight value (cf. step (b) of Algorithm 4-1) and such
that throughout the 64 steps of both calls to MD5Compress the propagation of
differences between corresponding variables follows a specific precise description,
as determined in step (c) of Algorithm 4-1. In this section we describe how this
description, which is called a differential path for MD5Compress, is determined
based on IHV, IHV′ and δB. According to equations (2),

δFt = ft(Q
′
t, Q
′
t−1, Q

′
t−2)− ft(Qt, Qt−1, Qt−2),

δTt = δFt + δQt−3 + δWt,

δRt = RL(T ′t , RCt)−RL(Tt, RCt), and

δQt+1 = δQt + δRt.

(4)

It follows that neither δFt nor δRt is uniquely determined given the input differ-
ences (δQt, δQt−1, δQt−2) and δTt, respectively. Therefore a more flexible tool is
required to describe in a succinct way a valid propagation of differences, starting
from IHV = (Q−3, Q0, Q−1, Q−2), IHV′ = (Q′−3, Q

′
0, Q

′
−1, Q

′
−2) and δB and,

in our case, resulting in the desired final differences (δQ61, δQ62, δQ63, δQ64) as
defined in Table 4-1 and as targeted by step (c) of Algorithm 4-1.

4.3.1 Bitconditions
Differential paths are described using bitconditions qt = (qt[i])

31
i=0 on (Qt, Q

′
t),

where each bitcondition qt[i] specifies a restriction on the bits Qt[i] and Q′t[i]
possibly including values of other bits Ql[i]. As we will show in this section,
we can specify the values of δQt, δFt for all t using bitconditions on (Qt, Q

′
t),
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which also determine δTt and δRt = δQt+1 − δQt according to the difference
equations (4). Thus, a differential path can be seen as a 68× 32 matrix (qt)

64
t=−3

of bitconditions. In general, the first four rows (qt)
0
t=−3 are fully determined by

the values of IHV and IHV′. Furthermore, in our specific case where δB consists
of just δm11 = ±2d, the final 34 rows (qt)

64
t=31 correspond to Table 4-1 and one

of the choices made in step (c) of Algorithm 4-1.

Table 4-3. Differential bitconditions

qt[i] condition on (Qt[i], Q
′
t[i]) ki

. Qt[i] = Q′t[i] 0
+ Qt[i] = 0, Q′t[i] = 1 +1
- Qt[i] = 1, Q′t[i] = 0 −1

δQt =
∑31
i=0 2iki and ∆Qt = (ki).

Table 4-4. Boolean function bitconditions

qt[i] condition on (Qt[i], Q
′
t[i]) direct/indirect direction

0 Qt[i] = Q′t[i] = 0 direct
1 Qt[i] = Q′t[i] = 1 direct

^ Qt[i] = Q′t[i] = Qt−1[i] indirect backward
v Qt[i] = Q′t[i] = Qt+1[i] indirect forward

! Qt[i] = Q′t[i] = Qt−1[i] indirect backward

y Qt[i] = Q′t[i] = Qt+1[i] indirect forward

m Qt[i] = Q′t[i] = Qt−2[i] indirect backward
w Qt[i] = Q′t[i] = Qt+2[i] indirect forward

# Qt[i] = Q′t[i] = Qt−2[i] indirect backward

h Qt[i] = Q′t[i] = Qt+2[i] indirect forward

? Qt[i] = Q′t[i] ∧ (Qt[i] = 1 ∨Qt−2[i] = 0) indirect backward
q Qt[i] = Q′t[i] ∧ (Qt+2[i] = 1 ∨Qt[i] = 0) indirect forward

Bitconditions are denoted using symbols such as 0, 1, +, -, ^, . . ., as defined in
Tables 4-3 and 4-4, to facilitate the representation of a differential path. A direct
bitcondition qt[i] does not involve any other indices than t and i, whereas an
indirect bitcondition involves one of the row indices t±1 or t±2 as well. Table 4-
3 lists differential bitconditions qt[i], which are direct bitconditions that specify
the value ki = Q′t[i]−Qt[i]. A full row of differential bitconditions qt = (ki)

31
i=0

fixes a BSDR of δQt =
∑31
i=0 2iki. Table 4-4 lists boolean function bitconditions,

which are direct or indirect. They are used to resolve a possible ambiguity in

∆Ft[[i]] = ft(Q
′
t[i], Q

′
t−1[i], Q′t−2[i])− ft(Qt[i], Qt−1[i], Qt−2[i]) ∈ {−1, 0,+1}

that may be caused by different possible values for Qj [i], Q
′
j [i] given differential

bitconditions qj [i]. As an example, for t = 0 and (qt[i], qt−1[i], qt−2[i]) = (., +, -)
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(cf. Table 4-3) there is an ambiguity:

if Qt[i] = Q′t[i] = 0 then ∆Ft[[i]] = ft(0, 1, 0)− ft(0, 0, 1) = −1,

but if Qt[i] = Q′t[i] = 1 then ∆Ft[[i]] = ft(1, 1, 0)− ft(1, 0, 1) = +1.

To resolve this ambiguity the triple of bitconditions (.,+,-) can be replaced by
(0,+,-) or (1,+,-) for the two cases given above, respectively.

All boolean function bitconditions include the constant bitcondition Qt[i] =
Q′t[i], so boolean function bitconditions do not affect δQt. Furthermore, the
indirect boolean function bitconditions never involve bitconditions + or -, since
those bitconditions can always be replaced by one of the direct ones ., 0 or 1. For
the indirect bitconditions we distinguish between ‘forward’ and ‘backward’ ones,
because that makes it easier to resolve an ambiguity later on in our step-wise
approach. In a valid (partial) differential path one can easily convert forward
bitconditions into backward bitconditions and vice versa.

When all δQt and δFt have been determined by bitconditions then also δTt
and δRt = δQt+1 − δQt can be determined, which together describe the bitwise
rotation of δTt in each step. This does, however, not imply that the left rotate
of δTt over RCt positions is equal to δRt or with what probability that happens.
See also Section 4.4.4.

The differential paths we constructed for several of our examples can be found
at http://www.win.tue.nl/hashclash/ChosenPrefixCollisions/.

4.4 Differential path construction

The basic idea to construct a differential path is to construct a partial lower
differential path over steps t = 0, 1, . . . , 11 and a partial upper differential path
over steps t = 63, 62, . . . , 16, so that the Qi involved in the partial paths meet
but do not overlap. Given the two partial paths, we try to connect them over the
remaining 4 steps into one full differential path which hopefully succeeds with
some non-negligible probability. Using many lower and upper differential paths
and trying to connect each combination of a lower and an upper differential
path will eventually result in full differential paths. Constructing the partial
lower path can be done by starting with bitconditions q−3, q−2, q−1, q0 that are
equivalent to the values of IHV, IHV′ and then extend this step by step. Similarly
the partial upper path can be constructed by extending the partial paths in
Table 4-1 step by step. In both constructions the transitions between the steps
must be compatible with the targeted message difference δB. To summarize,
step (c) of Algorithm 4-1 in Section 4.1 consists of the following substeps:

c.1 Given IHV and IHV′, determine the corresponding bitconditions (qi)
0
i=−3.

c.2 Generate partial lower differential paths by extending (qi)
0
i=−3 forward up

to step t = 11. This is explained in Sections 4.4.1 - 4.4.4.
c.3 Generate partial upper differential paths by extending the path specified

by Table 4-1 backward from t = 31 down to t = 16. This is explained in
Section 4.4.5.
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c.4 Try to connect all pairs of lower and upper differential paths over t =
12, 13, 14, 15 to generate as many full differential paths as possible given
the outcome of the two previous steps. This is explained in Section 4.4.6.

4.4.1 Extending differential paths forward
In general, when constructing a differential path one must first fix the message
block differences δm0, . . . , δm15. In our particular case this is achieved by the
choice of δSc,j in step (b) of Algorithm 4-1. Suppose we have a partial differential
path consisting of at least bitconditions qt−1 and qt−2 and that the differences
δQt and δQt−3 are known. In step c.2 of Algorithm 4-1, we want to extend this
partial differential path forward with step t resulting in the difference δQt+1,
bitconditions qt, and additional bitconditions qt−1, qt−2 (cf. Section 4.4).

We assume that all indirect bitconditions in qt−1 and qt−2 are forward and
involve only bits of Qt−1. If we already have qt as opposed to just the value δQt
(e.g. q0 resulting from given values IHV, IHV′), then we can skip Section 4.4.2
and continue at Section 4.4.3.

4.4.2 Carry propagation
First we select bitconditions qt based on the value δQt. Since we want to con-
struct differential paths with as few bitconditions as possible, but also want to
be able to randomize the process, any low weight BSDR (such as the NAF) of
δQt may be chosen, which then translates into a possible choice for qt as in
Table 4-3. For instance, with δQt = 28, we may choose qt[8] = ‘+’, or qt[8] = ‘-’
and qt[9] = ‘+’ (with in either case all other qt[i] = ‘.’).

4.4.3 Boolean function
For some i, let (a, b, c) = (qt[i], qt−1[i], qt−2[i]) be any triple of bitconditions
such that all indirect bitconditions involve only Qt[i], Qt−1[i] or Qt−2[i]. For any
such triple (a, b, c) let Uabc denote the set of tuples of values (x, x′, y, y′, z, z′) =
(Qt[i], Q

′
t[i], Qt−1[i], Q′t−1[i], Qt−2[i], Q′t−2[i]) satisfying it:

Uabc =
{

(x, x′, y, y′, z, z′) ∈ {0, 1}6 satisfies bitconditions (a, b, c)
}
.

The cardinality of Uabc indicates the amount of freedom left by (a, b, c). Triples
(a, b, c) for which Uabc = ∅ cannot be part of a valid differential path and are
thus of no interest. The set of all triples (a, b, c) as above and with Uabc 6= ∅ is
denoted by Ft.

Each (a, b, c) ∈ Ft induces a set Vabc of possible boolean function differences
∆Ft[[i]] = ft(x

′, y′, z′)− ft(x, y, z):

Vabc = {ft(x′, y′, z′)− ft(x, y, z) | (x, x′, y, y′, z, z′) ∈ Uabc} ⊂ {−1, 0,+1}.

A triple (d, e, f) ∈ Ft with |Vdef | = 1 leaves no ambiguity in ∆Ft[[i]] and is
therefore called a solution. Let St ⊂ Ft be the set of solutions.
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For arbitrary (a, b, c) ∈ Ft and for each g ∈ Vabc, we define Wabc,g as the
subset of St consisting of all solutions that are compatible with (a, b, c) and that
have g as boolean function difference:

Wabc,g = {(d, e, f) ∈ St | Udef ⊂ Uabc ∧ Vdef = {g}} .

For each g ∈ Vabc there is always a triple (d, e, f) ∈ Wabc,g consisting of direct
bitconditions 01+- that suffices, i.e., fixes a certain tuple in Uabc. This implies
that Wabc,g 6= ∅. Despite this fact, we are specifically interested in bitcondi-
tions (d, e, f) ∈Wabc,g that maximize |Udef | as such bitconditions maximize the
amount of freedom in the bits of Qt, Qt−1, Qt−2 while fully determining ∆Ft[[i]].

The direct and forward (resp. backward) boolean function bitconditions were
chosen such that for all t, i and (a, b, c) ∈ Ft and for all g ∈ Vabc there exists a
triple (d, e, f) ∈ Wabc,g consisting only of direct and forward (resp. backward)
bitconditions such that

{(x, x′, y, y′, z, z′) ∈ Uabc | ft(x′, y′, z′)− ft(x, y, z) = g} = Udef .

These boolean function bitconditions allow one to resolve an ambiguity in an
optimal way in the sense that they are sufficient and necessary.

If the triple (d, e, f) is not unique, then for simplicity we prefer direct over
indirect bitconditions and short indirect bitconditions (vy^!) over long indi-
rect ones (whqm#?). For given t, bitconditions (a, b, c), and g ∈ Vabc we define
FC(t, abc, g) = (d, e, f) as the preferred triple (d, e, f) consisting of direct and
forward bitconditions. Similarly, we define BC(t, abc, g) as the preferred triple
consisting of direct and backward bitconditions. These functions are easily de-
termined and should be precomputed. They have been tabulated in Appendix B
in Tables B-1, B-2, B-3 and B-4 grouped according to the four different round
functions F,G,H, I, and per table for all 27 possible triples (a, b, c) of differential
bitconditions.

To determine the differences δFt =
∑31
i=0 2igi we proceed as follows. For

i = 0, 1, 2, . . . , 31 we assume that we have valid bitconditions (a, b, c) = (qt[i],
qt−1[i], qt−2[i]) where only c may be indirect. If it is, it must involve Qt−1[i].
Therefore (a, b, c) ∈ Ft. If |Vabc| = 1, then there is no ambiguity and {gi} = Vabc.
Otherwise, if |Vabc| > 1, then we choose gi arbitrarily from Vabc and we resolve
the ambiguity by replacing bitconditions (a, b, c) by FC(t, abc, gi). Once all gi
and thus δFt have been determined, δTt is determined as δFt + δQt−3 + δWt.

Note that in the next step t+1 our assumptions hold again, since a is a direct
bitcondition and if b is indirect then it is forward and involves a. Bitconditions
a and b may be new compared to the previous step, namely if the triple (a, b, c)
was replaced by FC(t, abc, gi).

4.4.4 Bitwise rotation
The integer δTt as just determined does not uniquely determine δRt = RL(T ′t , n)−
RL(Tt, n), where n = RCt (cf. difference equations (4)). In this section we show
how to find the most likely δRt that corresponds to a given δTt, i.e., the v for
which |{X ∈ Z/232Z | v = RL(X + δTt, n)−RL(X,n)}| is maximized
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Any BSDR (k31, . . . , k32−n, k31−n, . . . , k0) of δTt gives rise to a candidate δRt
given by the BSDR RL((ki), n) = (k31−n, . . . , k0, k31, . . . , k32−n). Two BSDRs
(ki) and (li) of δTt result in the same δRt if

31−n∑
i=0

2iki =

31−n∑
i=0

2ili and

31∑
i=32−n

2iki =

31∑
i=32−n

2ili.

This suggests the following approach. We define a partition as a pair (α, β) of
integers such that α+ β = δTt mod 232, |α| < 232−n, |β| < 232 and 232−n|β. For
any partition (α, β), values ki ∈ {0,±1} for 0 ≤ i < 32 can be found such that

α =

31−n∑
i=0

2iki and β =

31∑
i=32−n

2iki. (5)

With α + β = δTt mod 232 it follows that (ki) is a BSDR of δTt. Conversely,
with (5) any BSDR (ki) of δTt defines a partition, which we denote (ki) ≡ (α, β).

The rotation of a partition (α, β) is defined as

RL((α, β), n) = (2nα+ 2n−32β mod 232).

If (ki) ≡ (α, β), this matchesRL((ki), n). The latter, as seen above, is a candidate
δRt, and we find that different partitions give rise to different δRt candidates.
Thus, to find the most likely δRt, we define

p(α,β) = Pr[RL((α, β), n) = RL(X + δTt, n)−RL(X,n)]

where X ranges over the 32-bit words, and show how p(α,β) can be calculated.
Let x = δTt mod 232−n and y = (δTt − x) mod 232 with 0 ≤ x < 232−n and

0 ≤ y < 232. This gives rise to at most 4 partitions:

• (α, β) = (x, y);
• (α, β) = (x, y − 232), if y 6= 0;
• (α, β) = (x− 232−n, y + 232−n mod 232), if x 6= 0;
• (α, β) = (x− 232−n, (y + 232−n mod 232)− 232), if x 6= 0 ∧ y + 232−n 6= 232.

These are all possible partitions, so we find that δTt leads to at most 4 different
possibilities for δRt. It remains to determine p(α,β) for the above partitions. For
each of the 4 possibilities this is done by counting the number of 32-bit words X
such that the BSDR defined by ki = (X + δTt)[i] −X[i] satisfies (ki) ≡ (α, β).
Considering the (32− n) low-order bits, the probability that a given α satisfies

α =
∑31−n
i=0 ki follows from the number r of Y ’s with 0 ≤ Y < 232−n such that

0 ≤ α+Y < 232−n: if α < 0 then r = 232−n+α and if α ≥ 0 then r = 232−n−α.
Hence r = 232−n − |α| out of 232−n Y’s. Now assuming α =

∑31−n
i=0 ki, there is

no carry to the high-order bits and the same argument can be used for β/232−n.
Hence, we conclude

p(α,β) =
232−n − |α|

232−n
· 2n − |β|2n−32

2n
=

232−n − |α|
232−n

· 232 − |β|
232

.
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Note that these probabilities, corresponding to the at most 4 partitions above,
indeed add up to 1.

We have shown that all δRt that are compatible with a given δTt can eas-
ily be determined, including the probabilities that they occur. In Algorithm 4-
1 we choose a partition (α, β) for which p(α,β) is maximal and take δRt =
RL((α, β), n). A more straightforward approach (as previously used in practice)
would be to use δRt = RL(NAF(δTt), n). This is in many cases the most likely
choice, and matches our desire to minimize the number of differences in δQt
and therefore also in δTt and δRt. Given δRt, we finally determine δQt+1 as
δQt + δRt.

4.4.5 Extending differential paths backward
Having dealt with the forward extension of step c.2 of Algorithm 4-1 in Sec-
tions 4.4.2, 4.4.3 and 4.4.4, we now consider the backward extension of step c.3
of Algorithm 4-1 (cf. Section 4.4). The backward construction follows the same
approach as the forward one. Our description relies on the notation introduced
in Section 4.4.3.

Suppose we have a partial differential path consisting of at least bitcondi-
tions qt and qt−1 and that the differences δQt+1 and δQt−2 are known. In step
c.3 of Algorithm 4-1 we want to extend this partial differential path backward
with step t resulting in the difference δQt−3, bitconditions qt−2, and additional
bitconditions qt, qt−1. We assume that all indirect bitconditions in qt and qt−1
are backward and only involve bits of Qt−1.

We choose a low weight BSDR (such as the NAF) of δQt−2, which then
translates into a possible choice for qt−2 as in Table 4-3.

As in the last two paragraphs of Section 4.4.3, the differences δFt =
∑31
i=0 2igi

are determined by assuming for i = 0, 1, . . . , 31 that we have valid bitconditions
(a, b, c) = (qt[i], qt−1[i], qt−2[i]) where only a may be indirect. If it is, it must
involve Qt−1[i]. Therefore (a, b, c) ∈ Ft. If |Vabc| = 1, then there is no ambiguity
and {gi} = Vabc. Otherwise, if |Vabc| > 1, then we choose gi arbitrarily from Vabc
and we resolve the ambiguity by replacing bitconditions (a, b, c) by BC(t, abc, gi).

To rotate δRt = δQt+1 − δQt over n = 32 − RCt bits, we may follow the
framework as set forth in Section 4.4.4 with the roles of δRt and δTt reversed:
choose a partition (α, β) (of δRt as opposed to δTt) with maximal probability and
determine δTt = RL((α, β), n). Finally, we determine δQt−3 = δTt − δFt − δWt

to extend our partial differential path backward with step t. Note that here
also (i.e., as in the last paragraph of Section 4.4.3) in the next step t − 1 our
assumptions hold again, since c is a direct bitcondition and if b is indirect then
it is backward and involves c (where b and c are new if (a, b, c) was replaced by
BC(t, abc, gi)).

4.4.6 Constructing full differential paths
Construction of a full differential path can be done as follows. Assume that for
some δQ−3 and bitconditions q−2, q−1, q0 the forward construction as described
in Sections 4.4.1, 4.4.2, 4.4.3, and 4.4.4 has been carried out up to step t =
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11 (cf. step c.2 in Section 4.4). Furthermore, assume that for some δQ64 and
bitconditions q63, q62, q61 the backward construction as described in Section 4.4.5
has been carried out down to step t = 16 (cf. step c.3 in Section 4.4). For each
combination of forward and backward partial differential paths thus found, this
leads to bitconditions q−2, q−1, . . . , q11, q14, q15, . . . , q63 and differences δQ−3,
δQ12, δQ13, δQ64.

It remains to try and glue together each of these combinations by finishing
steps t = 12, 13, 14, 15 (cf. step c.4 in Section 4.4) until a full differential path is
found. First, as in the backward extension in Section 4.4.5, for t = 12, 13, 14, 15
we set δRt = δQt+1 − δQt, choose the resulting δTt by left-rotating δRt over
n−RCt bits, and determine δFt = δTt − δWt − δQt−3.

Algorithm 4-2 Construction of Ui+1 from Ui.
Suppose Ui is given as {(δQ12, δQ13, δF12, δF13, δF14, δF15)} if i = 0 or if i > 0
constructed inductively based on Ui−1 by means of this algorithm. For each tuple
(q1, q2, f1, f2, f3, f4) ∈ Ui do the following:

1. Let Ui+1 = ∅ and (a, b, e, f) = (q15[i], q14[i], q11[i], q10[i])

2. For each bitcondition d = q12[i] ∈
{
{.} if q1[i] = 0
{-, +} if q1[i] = 1

do

3. Let q′1 = 0,−1 or +1 depending on whether d = ‘.’, ‘-’ or ‘+’, respectively
4. For each different f ′1 ∈ {−f1[i],+f1[i]} ∩ Vdef do
5. Let (d′, e′, f ′) = FC(12, def, f ′1)

6. For each bitcondition c = q13[i] ∈
{
{.} if q2[i] = 0
{-, +} if q2[i] = 1

do

7. Let q′2 = 0,−1 or +1 depending on whether c = ‘.’, ‘-’ or ‘+’, respectively
8. For each different f ′2 ∈ {−f2[i],+f2[i]} ∩ Vcd′e′ do
9. Let (c′, d′′, e′′) = FC(13, cd′e′, f ′2)

10. For each different f ′3 ∈ {−f3[i],+f3[i]} ∩ Vbc′d′′ do
11. Let (b′, c′′, d′′′) = FC(14, bc′d′′, f ′3)
12. For each different f ′4 ∈ {−f4[i],+f4[i]} ∩ Vab′c′′ do
13. Let (a′, b′′, c′′′) = FC(15, ab′c′′, f ′4)
14. If (q1 − 2iq′1, q2 − 2iq′2, f1 − 2if ′1, f2 − 2if ′2, f3 − 2if ′3, f4 − 2if ′4)

is not in Ui+1 yet, insert it in Ui+1

We aim to complete the differential path by finding new bitconditions q10,
q11, . . ., q15 that are compatible with the original bitconditions and that result
in the required δQ12, δQ13, δF12, δF13, δF14, δF15.

An efficient way to find the missing bitconditions is to first test if they exist,
and if so to backtrack to actually construct them. For i = 0, 1, . . . , 32 we attempt
to construct a set Ui consisting of all tuples (q1, q2, f1, f2, f3, f4) of 32-bit integers
with qj ≡ fk ≡ 0 mod 2i for j = 1, 2 and k = 1, 2, 3, 4 such that for all ` =
0, 1, . . . , i − 1 there exist compatible bitconditions q10[`], q11[`], . . . , q15[`] that
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determine ∆Q11+j [[`]] and ∆F11+k[[`]] below, and such that
δQ11+j = qj +

i−1∑
`=0

2`∆Q11+j [[`]], j = 1, 2,

δF11+k = fk +

i−1∑
`=0

2`∆F11+k[[`]], k = 1, 2, 3, 4.

(6)

From these conditions it follows that U0 must be chosen as {(δQ12, δQ13, δF12,
δF13, δF14, δF15)}. For i = 1, 2, . . . , 32, we attempt to construct Ui based on
Ui−1 using Algorithm 4-2. Per j there are at most two qj ’s and per k there are
at most two fk’s that can satisfy the above relations. Thsi implies that |Ui| ≤ 26

for each i, 0 ≤ i ≤ 32. On the other hand, for each tuple in Ui there may in
principle be many different compatible sets of bitconditions.

As soon as we encounter an i for which Ui = ∅, we know that the desired
bitconditions do not exist, and that we should try another combination of for-
ward and backward partial differential paths. If, however, we find U32 6= ∅ then
it must be the case that U32 = {(0, 0, 0, 0, 0, 0)}. Furthermore, in that case, every
set of bitconditions that leads to this non-empty U32 gives rise to a full differen-
tial path, since equations (6) hold with i = 32. Thus, if U32 6= ∅, there exists at
least one valid path u0, u1, . . . , u32 with ui ∈ Ui. For each valid path, the desired
new bitconditions (q15[i], q14[i], . . . , q10[i]) are (a′, b′′, c′′′, d′′′, e′′, f ′), which can
be found at step 13 of Algorithm 4-2.

4.5 Collision finding

Collision finding is the process of finding an actual message block pair Sc,j , S
′
c,j

that satisfies a given δSc,j and a differential path based on a given IHVn+j−1,
IHV′n+j−1, cf. step (d) of Algorithm 4-1. The differential paths as originally
considered by Wang et al. [34] consisted of only 28 bitconditions. In that case,
collision finding can now be done in the equivalent of a mere 224.8 expected MD5
compression function calls, for arbitrary IHV [28]. For chosen-prefix collisions,
however, the number of bitconditions is substantially larger, thereby complicat-
ing collision finding. For instance, in one of our earliest chosen-prefix collision
constructions the differential path has 71 bitconditions on Q20 up to Q63.

4.5.1 Tunnels
To find collisions for these more difficult differential paths, we make extensive use
of so-called tunnels [17]. A tunnel allows one to make small changes in a certain
first round Qt, in specific bits of Qt that are determined by the full differential
path q−3, q−2, . . . , q64 under consideration, while causing changes in the second
round only after some step l that depends on the tunnel. However, each tunnel
implies that additional first-round bitconditions have to be taken into account
in the differential path, while leaving freedom of choice for some of the bits in
Qt that may be changed. A tunnel’s strength is the number of independent bits
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that can be changed in this first round Qt. Thus, a tunnel of strength k allows
us to generate 2k different message blocks that all satisfy the differential path
up to and including step l in the second round.

Table 4-5. Collision finding tunnels for MD5.

Tunnel Change Affected Extra bitconditions?

T1 Q4[b] m3..m5,m7, Q21..Q64 Q5[b] = 1, Q6[b] = 1

T2 Q5[b] m4,m5,m7,m8, Q21..Q64 Q6[b] = 0

T3 Q14[b] m13..m15,m6, Q3,m2..m5, Q21..Q64 Q15[b] = Q16[b], Q3[b] free†

T4 Q9[b] m8..m10,m12, Q22..Q64 Q10[b] = 1, Q11[b] = 1

T5 Q10[b] m9,m10,m12,m13, Q22..Q64 Q11[b] = 0

T6 Q8[b] m7..m9, Q12,m12..m15, Q23..Q64 Q10[b] = 1, RR(Q12, 22)[b] free‡

T7 Q4[b] m3,m4,m7, Q24..Q64 Q5[b] = 0, Q6[b] = 1

T8 Q9[b] m8,m9,m12, Q25..Q64 Q10[b] = 0, Q11[b] = 1

? The extra bitconditions refer only to Qt[b] and not to Q′t[b], so e.g. Q6[b] = 0 is met
by both q6[b] = ‘0’ and q6[b] = ‘+’.
† Bitcondition q3[b] = ‘.’ and no other indirect bitconditions may involve Q3[b]. Set
Q3[b] = Q14[b] to avoid carries in Q3.
‡ Bitcondition q12[b− 22 mod 32] = ‘.’ and no other indirect bitconditions may involve
Q12[b− 22 mod 32]. Set Q12[b− 22 mod 32] = Q8[b] to avoid carries in Q12.

The tunnels used in our collision finding algorithm are shown in Table 4-5.
For example, the first tunnel (T1) allows changes in bits of Q4, in such a way
that if Q4[b] is changed for some bit position b with 0 ≤ b < 32, this causes
extra bitconditions Q5[b] = 1 and Q6[b] = 1, which have to be incorporated
in the differential path. Furthermore, because tunnel T1 affects after the first
round only Q21 through Q64 we have that l = 20, and T1 can be used to change
message blocks m3,m4,m5, and m7. To determine the strength of a tunnel one
first needs to incorporate the tunnel’s extra bitconditions in the full differential
path, and then count the remaining amount of freedom in the first round Qt
that is changed by the tunnel. Given its dependence on the differential path, a
tunnel’s strength can thus not be tabulated.

The most effective tunnel is T8. As indicated in the table, it affects after the
first round only Q25, . . . , Q64. Over these rounds, Wang’s original differential
paths have 20 bitconditions whereas the chosen-prefix collision differential paths
that we manage to construct have approximately 27 bitconditions. It follows
that, given enough tunnel strength, especially for T7 and T8, collision finding
can be done efficiently.
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4.5.2 Algorithm

Algorithm 4-3 Collision finding algorithm.

Given a full differential path q−3, . . . , q64 consisting of only direct and backward bit-
conditions and the set T1, . . . , T8 of tunnels from Table 4-5, perform the following steps:

1. Determine for all tunnels for which bits b the extra bitconditions as shown in
Table 4-5 can be met. For each possible case, apply compatible bitconditions to
enforce the extra bitconditions and change the bitconditions qt[b] of the changed
or affected Qt[b] in the first round from ‘.’ to ‘0’.

2. Perform the steps below until a collision block has been found.
3. Select Q1, Q2, Q13, . . . , Q16 such that q1, q2, q13, . . . , q16 hold.
4. Compute m1, Q17.
5. If q17 holds and the rotation for t = 16 is successful, then proceed.
6. Store the set Z of all pairs (Q1, Q2) meeting q1, q2 that do not change m1 and

bits of Q2 involved in q3.
7. For all Q3, . . . , Q7 meeting q3, . . . , q7 do:
8. Compute m6, Q18.
9. If q18 holds and the rotation for t = 17 is successful, then proceed.

10. For all Q8, . . . , Q12 meeting q8, . . . , q12 do:
11. Compute m11, Q19.
12. If q19 holds and the rotation for t = 18 is successful, then proceed.
13. For all (Q1, Q2) in Z do:
14. Compute m0, Q20.
15. If q20 holds and the rotation for t = 19 is successful, then proceed.
16. For all values of the bits of tunnels T1, T2, T3 do:
17. Set the bits to those values and compute m5, Q21.
18. If q21 holds and the rotation for t = 20 is successful, then proceed.
19. For all values of the bits of tunnels T4, T5 do:
20. Set the bits to those values and compute m10, Q22.
21. If q22 holds and the rotation for t = 21 is successful, then proceed.
22. For all values of the bits of tunnel T6 do:
23. Set the bits to those values and compute m15, Q23.
24. If q23 holds and the rotation for t = 22 is successful, then proceed.
25. For all values of the bits of tunnel T7 do:
26. Set the bits to those values and compute m4, Q24.
27. If q24 holds and the rotation for t = 23 is successful, then proceed.
28. For all values of the bits of tunnel T8 do:
29. Set the bits to those values and compute m9, Q25.
30. If q25 holds and the rotation for t = 24 is successful, then proceed.
31. Compute m0, . . . ,m15, Q26, . . . , Q64 and Q′1, . . . , Q

′
64.

32. If δ̂Qt = Q′t −Qt agrees with qt for t = 61, 62, 63, 64, return M,M ′.

Computation of mi and Qi is performed at t = i and t = i− 1, respectively.
We assume that the rotations in the first round have probability very close to 1 to be
correct, and therefore do not verify them. This is further explained in Section 4.5.3.
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In our construction we performed the collision finding using Algorithm 4-3.
The conditions on the differential path imposed by Algorithm 4-3 can easily be
met because, as mentioned in Section 4.3.1, forward and backward bitconditions
in the differential path are interchangeable. Steps 10 through 15 of Algorithm 4-3
are its most computationally intensive part, in particular for the toughest dif-
ferential paths in a chosen-prefix collision, so they should be optimized. Greater
tunnel strength significantly reduces the time spent there, because after step 15
all tunnels are used.

In practice, in step c.4 of Algorithm 4-1 (cf. Section 4.4) we keep only those
full differential paths for which tunnels T1, T2, T4 and T5 satisfy a certain lower
bound on their strength. Furthermore, of the full differential paths kept, we select
those with the best properties such as high tunnel strength and a low number
of bitconditions on Q18, . . . , Q63.

4.5.3 Rotation bitconditions
As mentioned below Algorithm 4-3, it is assumed there that all rotations in the
first round will be correct with probability very close to 1. In Algorithm 4-3,
Q1, . . . , Q16 are chosen in a non-sequential order and also changed at various
steps in the algorithm. Ensuring correct rotations in the first round would be
cumbersome and it would hardly avoid wasting time in a state where one or
more rotations in the first round would fail due to the various tunnels. However,
as shown in [27], if we use additional bitconditions qt[i] we can (almost) ensure
correct rotations in the first round, thereby (almost) eliminating both the effort
to verify rotations and the wasted computing time. This is explained below.

We use the notation introduced in Section 4.4.4. Given δTt and δRt it is
easy to determine which partition (α, β) satisfies RL((α, β), RCt) = δRt. The
probability that this correct rotation holds is not necessarily p(α,β) because it
may be assumed that bitconditions qt and qt+1 hold and these directly affect
Rt = Qt+1 −Qt and thus Tt = RR(Rt, RCt). Hence, using bitconditions qt and
qt+1 we can try and increase the probability of a correct rotation in step t to
(almost) 1 in the following way.

The other three partitions (of the four listed in Section 4.4.4) correspond to
the incorrect rotations. Those partitions are of the form

(α̂, β̂) = (α− λ0232−RCt , β + λ0232−RCt + λRCt2
32), λ0, λRCt ∈ {−1, 0,+1}

where either λ0 6= 0 or λRCt 6= 0. They result in incorrect δ̂Rt of the form

δ̂Rt = RL((α̂, β̂), RCt) = δRt + λ020 + λRCt
2RCt .

They are caused by a carry when adding δTt to Tt that does or does not prop-
agate: from bit position 32 − RCt − 1 to 32 − RCt for λ0 6= 0 and from bit
position 31 to 32 for λRCt

6= 0. Since we chose the partition (α, β) with highest
probability, this usually means that we have to prevent instead of ensure those
propagations in order to decrease the probability that λ0 6= 0 or λRCt

6= 0.
To almost guarantee proper rotations in each step of Algorithm 4-3, addi-

tional bitconditions can be determined by hand, as shown in [27]. It was seen that

28



adding bitconditions on Qt, Qt+1 around bit positions 31 − RCt + i and lower
helps preventing λi 6= 0. This can be automated using a limited brute-force
search, separately handling the cases λ0 6= 0 and λRCt 6= 0.

Let i ∈ {0, RCt}. Given bitconditions qt, qt+1, we estimate Pr[λi 6= 0|qt, qt+1]

by sampling a small set of Q̂t, Q̂t+1 satisfying qt, qt+1, e.g. of size 211, and de-

termining the fraction where λi = NAF(δ̂Rt − δRt)[[i]] 6= 0 using

δ̂Rt = RL(RR(Q̂t+1 − Q̂t, RCt) + δTt, RCt).

Using this approach, we estimate the probability that λi = 0 by selecting a
small search bound B and exhaustively trying all combinations of additional
bitconditions on Qt[b], Qt+1[b] for b = 31−RCt+i−B, . . . , 31−RCt+i. Finally, if
there are any bitconditions (q′t, q

′
t+1) for which Pr[λi 6= 0|q′t, q′t+1] is negligible,

we select the pair (q′t, q
′
t+1) that leads to the smallest number of additional

bitconditions and for which Pr[λ0 = λRCt = 0|qt−1, q′t] and Pr[λ0 = λRCt =
0|q′t+1, qt+2] do not decrease significantly for step t− 1 and t+ 1, respectively.

4.6 Implementation remarks

Our software to construct chosen-prefix collisions consists of five main compo-
nents that perform the following tasks:

1. the birthday search (with a special implementation for Sony’s PlayStation 3);

2. forward extension of a given set of partial lower differential paths by a given
step t, saving only the paths with the fewest bitconditions;

3. backward extension of a given set of partial upper differential paths by a
given step t, saving only the paths with the fewest bitconditions;

4. attempt to connect all combinations of given lower and upper differential
paths;

5. coordinate the four earlier tasks by preparing the required inputfiles, collect
the outputs, and search for near-collision blocks.

These tasks are carried out as described in the earlier sections. A few remarks are
in order. The first task is the most computationally expensive one and consists
mostly of simple applications of the MD5 compression function. It turns out that
the Cell processor, contained in the PlayStation 3 game console, can be made
to perform this task about 30 times faster than a regular 32-bit PC core. More
details on the peculiarities of the PlayStation 3 implementation are described in
Section 5.2.2.

For the second and third task we exhaustively try all limited weight BSDRs
of δQt, all possible δFt’s, and we use the highest-probability rotation. We keep
at most a preset number of paths with the lowest number of bitconditions that
have a preset minimum total strength over tunnels T1, T2, T4, and T5. Each of
the programs is designed to execute several separate but parallel threads.
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4.7 Complexity analysis

The overall complexity of the chosen-prefix collision attack depends on the pa-
rameters used for the birthday search and the construction of pairs of near-
collision blocks. This involves various trade-offs and is described in this section.

The birthday search complexity depends on the parameter w (defining the
family of differential paths), the upper bound on the number r of pairs of near-
collision blocks, the size 264+k of the search space, and the amount of available
memory M . For various parameter choices of r, k and w we have tabulated
the heuristically determined expected birthday search complexities and memory
requirements in Appendix C (in practice it is advisable to use a small factor
more memory than required to achieve Ccoll � Ctr). Given r, w and M , the
optimal value for k and the resulting birthday complexity can thus easily be
looked up. When r is left free, one can balance the birthday complexity and the
complexity of constructing r pairs of near-collision blocks.

Each pair of near-collision blocks requires construction of a set of full dif-
ferential paths followed by the actual construction of the pair of near-collision
blocks. The complexity of the former construction depends on several parameter
choices, such as the size of the sets of lower and upper differential paths, and
the restraints used when selecting BSDRs for a δQt. Naturally, a higher overall
quality of the resulting complete differential paths, i.e., a low number of over-
all bitconditions and a high total tunnel strength, generally results when more
effort is put into the construction. For practical purposes we have found param-
eters sufficient for almost all cases (as applicable to the chosen-prefix collision
attack) that have an average total complexity equivalent to roughly 235 MD5
compressions.

The complexity of the collision finding, i.e., the construction of a pair of near-
collision blocks, depends on the parameter w, the total tunnel strength and the
number of bitconditions in the last 2.5 rounds. For small w = 0, 1, 2 and paths
based on Table 4-1, the construction requires on average roughly the equivalent
of 234 MD5 compressions. Combined with the construction of the differential
paths, this leads to the rough overall estimate of about 235.6 MD5 compressions
to find a single pair of near-collision blocks for a chosen-prefix collision attack.

With w = 2 and optimizing for overall complexity this leads to the optimal
parameter choices r = 9 and k = 0. For these choices, the birthday search
cost is about 237 MD5 compressions and constructing the r = 9 pairs of near-
collision blocks costs about 238.8 MD5 compressions. The overall complexity is
thus estimated at roughly 239.1 MD5 compressions, which takes about 35 hours
on a single PC-core. For this parameter choice the memory requirements for the
birthday search are very low, even negligible compared to the several hundreds
of MBs required for the construction of the differential paths.

With more specific demands, such as a small number r of near-collision blocks
possibly in combination with a relatively low M , the overall complexity will
increase. As an example, our rogue CA construction required at most r = 3
near-collision blocks, and using M = 5TB this results in an overall complexity
of about 249 MD5 compressions.
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4.8 Single-block chosen-prefix collision

Using a different approach it is even possible to construct a chosen-prefix collision
using only a single pair of near-collision blocks. Together with 84 birthday bits,
the chosen-prefix collision-causing appendages are only 84+512 = 596 bits long.
This approach is based on an even richer family of differential paths that allows
elimination using a single pair of near-collision blocks of a set of δIHVs that
is bounded enough so that finding the near-collision blocks is still feasible, but
large enough that such a δIHV can be found efficiently by a birthday search.
Instead of using the family of differential paths based on δm11 = ±2i, we use
the fastest known collision attack for MD5 and vary the last few steps to find a
large family of differential paths.

We first present a new collision attack for MD5 with complexity of approx-
imately 216 MD5 compressions improving upon the 220.96 MD5 compressions
required in [35]. Our starting point is the partial differential path for MD5 given
in Table 4-6. It is based on message differences δm2 = 28, δm4 = δm14 = 231

and δm11 = 215 which is very similar to those used by Wang et al. in [34] for the
first collision attack against MD5. This partial differential path can be used for a
near-collision attack with complexity of approximately 214.8 MD5 compressions.

This leads in the usual fashion to an identical-prefix collision attack for MD5
that requires approximately 216 MD5 compressions, since one has to do it twice:
first to add differences to δIHV and then to eliminate them again. It should be
noted that usually bitconditions are required on the IHV and IHV′ between the
two collision blocks which imply an extra factor in complexity. In the present
case, however, we can construct a large set of differential paths for the second
near-collision block that will cover all bitconditions that are likely to occur,
thereby avoiding the extra complexity.

By properly tuning the birthday search, the same partial differential path
leads to the construction of a single near-collision block chosen-prefix collision
for MD5. By varying the last steps of the differential path and by allowing the
collision finding complexity to grow by a factor of about 226, we have found
a set S of about 223.3 different δIHV = (δa, δb, δc, δd) of the form δa = −25,
δd = −25 + 225, δc = −25 mod 220 that can be eliminated. Such δIHVs can be
found using an 84-bit birthday search with step function f : {0, 1}84 → {0, 1}84
of the form

f(x) =

{
φ(MD5compress(IHV, B‖x) + δÎHV) for σ(x) = 0

φ(MD5compress(IHV′, B′‖x)) for σ(x) = 1,

where δÎHV is of the required form, σ : x 7→ {0, 1} is a balanced selector function
and φ(a, b, c, d) 7→ a‖d‖(c mod 220). There are 2128−84 = 244 possible δIHVs of
this form, of which only about 223.3 are in the allowed set S. It follows that a
birthday collision has probability p = 223.3/(244 · 2) = 2−21.7 to be useful, where
the additional factor 2 stems from the fact that different prefixes are required.

A useful birthday collision can be expected after
√
π284/(2p) ≈ 253.2 MD5

compressions, requires 400MB of storage and takes about 3 days on 215 PS3s.
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Table 4-6. Partial differential path for fast near-collision attack.

t δQt δFt δWt δTt δRt RCt

26 −28

27 0

28 0

29 0 0 28 0 0 9

30− 33 0 0 0 0 0 ·
34 0 0 215 215 231 16

35 231 231 231 0 0 23

36 231 0 0 0 0 4

37 231 231 231 0 0 11

38− 46 231 231 0 0 0 ·
47 231 231 28 28 231 23

48 0 0 0 0 0 6

49 0 0 0 0 0 10

50 0 0 231 0 0 15

51− 59 0 0 0 0 0 ·
60 0 0 231 231 −25 6

61 −25 0 215 215 225 10

62 −25 + 225 0 28 28 223 15

63 −25 + 225 + 223 25 − 223 0 25 − 223 226 − 214 21

64 −25 + 225 + 223 + 226 − 214

Partial differential path for t = 29, . . . , 63 using message differences δm2 = 28, δm4 =
δm14 = 231, δm11 = 215. The probability that it is satisfied is approximately 2−14.5.

The expected complexity of finding the actual near-collision blocks is bounded
by about 214.8+26 = 240.8 MD5 compressions.

In Table 4-7 two 128-byte messages are given both consisting of a 52-byte
chosen prefix and a 76-byte single-block chosen-prefix collision suffix and with
colliding MD5 hash value D320B6433D8EBC1AC65711705721C2E1.

5 Applications of chosen-prefix collisions

When exploiting collisions in real world applications two major obstacles must
be overcome.

– The problem of meaningful collisions. Given current methods, collisions re-
quire appendages consisting of unpredictable and mostly uncontrollable bit-
strings. These must be hidden in the usually heavily formatted application
data structure without raising suspicion.

– The problem of realistic attack scenarios. As we do not have effective at-
tacks against MD5’s (second) preimage resistance but only collision attacks,
we cannot target existing MD5-values. In particular, the colliding data struc-
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Table 4-7. Example single-block chosen-prefix collision.

Message 1
4F 64 65 64 20 47 6F 6C 64 72 65 69 63 68 0A 4F

64 65 64 20 47 6F 6C 64 72 65 69 63 68 0A 4F 64

65 64 20 47 6F 6C 64 72 65 69 63 68 0A 4F 64 65

64 20 47 6F D8 05 0D 00 19 BB 93 18 92 4C AA 96

DC E3 5C B8 35 B3 49 E1 44 E9 8C 50 C2 2C F4 61

24 4A 40 64 BF 1A FA EC C5 82 0D 42 8A D3 8D 6B

EC 89 A5 AD 51 E2 90 63 DD 79 B1 6C F6 7C 12 97

86 47 F5 AF 12 3D E3 AC F8 44 08 5C D0 25 B9 56

Message 2
4E 65 61 6C 20 4B 6F 62 6C 69 74 7A 0A 4E 65 61

6C 20 4B 6F 62 6C 69 74 7A 0A 4E 65 61 6C 20 4B

6F 62 6C 69 74 7A 0A 4E 65 61 6C 20 4B 6F 62 6C

69 74 7A 0A 75 B8 0E 00 35 F3 D2 C9 09 AF 1B AD

DC E3 5C B8 35 B3 49 E1 44 E8 8C 50 C2 2C F4 61

24 4A 40 E4 BF 1A FA EC C5 82 0D 42 8A D3 8D 6B

EC 89 A5 AD 51 E2 90 63 DD 79 B1 6C F6 FC 11 97

86 47 F5 AF 12 3D E3 AC F8 44 08 DC D0 25 B9 56

tures must be generated simultaneously, along with their shared hash, by the
adversary.

In Section 5.1 several chosen-prefix collision applications are surveyed where
these problems are addressed with varying degrees of success. Sections 5.2, 5.3,
and 5.4 describe the three most prominent applications in more detail.

5.1 A survey of potential applications

We mention some potential applications of chosen-prefix collisions.

Digital certificates. Given how heavily they rely on cryptographic hash func-
tions, digital certificates are the first place to look for applications of chosen-
prefix collisions. Two X.509 certificates are said to collide if their to-be-signed
parts have the same hash and consequently their digital signatures, as pro-
vided by the CA, are identical. In earlier work (cf. [18]) we have shown how
identical-prefix collisions can be used to construct colliding X.509 certificates
with different RSA moduli but identical Distinguished Names. Here the RSA
moduli absorbed the random-looking near-collision blocks, thus inconspicu-
ously and elegantly solving the meaningfulness problem. Allowing different
Distinguished Names required chosen-prefix collisions, as shown in [29]. The
certificates resulting from both constructions do not contain spurious bits,
so superficial inspection at bit level of either of the certificates will not reveal
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the existence of a sibling certificate that collides with it signature-wise. Nev-
ertheless, for these constructions to work the entire to-be-signed parts, and
thus the signing CA, must be fully under our own control, thereby limiting
the practical attack potential.
A related but in detail rather different construction was carried out in
collaboration with Alexander Sotirov, Jacob Appelbaum, David Molnar,
and Dag Arne Osvik, as reported on http://www.win.tue.nl/hashclash/

rogue-ca/ and in [30]. Although in practice a certificate’s to-be-signed part
cannot be for 100% under control of the party that submits the certifica-
tion request, for some commercial CAs (that still used MD5 for their digital
signature generation) the entire to-be-signed part could be predicted re-
liably enough to make the following guess-and-check approach practically
feasible: prepare the prefix of the to-be-signed part of a legitimate certifica-
tion request including a guess for the part that will be included by the CA
upon certification, prepare a rogue to-be-signed prefix, determine different
collision-causing and identical collision-maintaining appendages to complete
two colliding to-be-signed parts, and submit the legitimate one for certifica-
tion. If upon receipt of the legitimate certificate the guess turns out to have
been correct, then the rogue certificate can be completed by pasting the
CA’s signature of the legitimate data onto the rogue data: because the data
collide, the signature will be equally valid for both. Otherwise, if the guess is
incorrect, another attempt is made. Using this approach we managed (upon
the 4th attempt) to trick a commercial CA into providing a signature valid
for a rogue CA certificate. For the intricate details of the construction we
refer to Section 5.2.
A few additional remarks about this construction are in order here. We
created not just a rogue certificate, but a rogue CA certificate, containing
identifying information and public key material for a rogue CA. The private
key of this rogue CA is under our control. As the commercial CA’s signature
is valid for the rogue CA certificate, all certificates issued by the rogue CA
are trusted by anybody trusting the commercial CA. As the commercial CA’s
root certificate is present in all major browsers, this gives us in principle the
possibility to impersonate any certificate owner. This is certainly a realistic
attack scenario. The price that we have to pay is that the meaningfulness
problem is only adequately – and most certainly not elegantly – solved: as
further explained in the next paragraph, one of the certificates contains a
considerable number of suspicious-looking bits.
To indicate that a certificate is a CA certificate, a certain bit has to be set
in the certificate’s to-be-signed-part. According to the X.509v3 standard [6],
this bit comes after the public key field. It is unlikely that a commercial CA
will accept a certification request where the CA bit is set. Therefore, the
bit must not be set in the legitimate request. For our rogue CA certificate
construction, the fact that the two to-be-signed parts must contain a differ-
ent bit after the public key field causes an incompatibility with our ‘usual’
colliding certificate construction as in [18] and [29]. In that construction the
collision-causing appendages correspond to the high order bits of RSA mod-
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uli, and they are followed by identical collision-maintaining appendages that
transform the two appendages into valid RSA moduli. Anything following
after the moduli must remain identical lest the collision property goes lost.
As a consequence, the appendages on the rogue side can no longer be hid-
den in the public key field and some other field must be found for them.
Such a field may be specially defined for this purpose, or an existing (propri-
etary) extension may be used. The Netscape Comment extension is a good
example of the latter, as we found that it is ignored by the major certifi-
cate processing software. The upshot is, however, that as the appendages
have non-negligible length, it will be hard to define a field that will not look
suspicious to someone who looks at the rogue certificate at bit level.

Colliding documents. In [7] (see also [10]) it was shown how to construct a
pair of PostScript files that collide under MD5, but that display different
messages when viewed or printed. These constructions use identical-prefix
collisions, and therefore they have to rely on the presence of both messages
in each of the colliding files and on macro-functionalities of the document
format used. Obviously, this raises suspicion upon inspection at bit level.
With chosen-prefix collisions, one message per colliding document suffices
and macro-functionalities are no longer required. For example, using a doc-
ument format that allows insertion of color images (such as Microsoft Word
or Adobe PDF), inserting one message per document, two documents can be
made to collide by appending carefully crafted color images after the mes-
sages. A short one pixel wide line will do – for instance hidden inside a layout
element, a company logo, or a nicely colored barcode – and preferably scaled
down to hardly visible size (or completely hidden from view, as possible
in PDF). An extension of this construction is presented in the paragraphs
below and set forth in detail in Section 5.3.

Hash based commitments. Kelsey and Kohno [15] presented a method to
first commit to a hash value, and next to construct faster than by a triv-
ial pre-image attack a document with the committed hash value, and with
any message of one’s choice as a prefix. The method applies to any Merkle-
Damg̊ard hash function, such as MD5, that given an IHV and a suffix pro-
duces some IHV. Omitting details involving message lengths and Merkle-
Damg̊ard strengthening, the idea is to commit to a hash value based on an
IHV at the root of a tree, either that IHV itself or calculated as the hash of
that IHV and some suffix at the root. The tree is a complete binary tree and
is calculated from its leaves up to the root, so the IHV at the root will be one
of the last values calculated. This is done in such a way that each node of the
tree is associated with an IHV along with a suffix that together hash to the
IHV associated with the node’s parent. Thus, two siblings have IHVs and
suffixes that collide under the hash function. The IHVs at the leaves may be
arbitrarily chosen but are, preferably, all different. Given a prefix of one’s
choice one performs a brute-force search for a suffix that, when appended to
the prefix and along with the standard IHV, results in the IHV at one of the
leaves (or nodes) of the tree. Appending the suffixes one encounters on one’s
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way from that leave or node to the root, results in a final message with the
desired prefix and committed hash value.
Originally based on a birthday search, the construction of the tree can be
done more efficiently by using chosen-prefix collisions to construct sibling
node suffixes based on their IHVs. For MD5, however, it remains far from
feasible to carry out the entire construction in practice. In a variant that is
feasible, one commits to a prediction by publishing its hash value. In due time
one reveals the correct prediction, chosen from among a large enough precon-
structed collection of documents that, due to tree-structured chosen-prefix
collision appendages, all share the same published hash value. In section 5.3
we present an example involving 12 documents.

Software integrity checking. In [14] and [22] it was shown how any existing
MD5 collision, such as the ones originally presented by Xiaoyun Wang at the
Crypto 2004 rump session, can be abused to mislead integrity checking soft-
ware that uses MD5. A similar application, using freshly made collisions,
was given on http://www.mathstat.dal.ca/~selinger/md5collision/.
See also [9]. As shown on http://blog.didierstevens.com/2009/01/17/

this can even be done within the framework of Microsoft’s Authenticode code
signing program. All these results use identical-prefix collisions and, similar
to the colliding PostScript application mentioned earlier, differences in the
colliding inputs are used to construct deviating execution flows.
Chosen-prefix collisions allow a more elegant approach, since common oper-
ating systems ignore bitstrings that are appended to executables: the pro-
grams will run unaltered. Thus, using tree-structured chosen-prefix collision
appendages as above, any number of executables can be made to have the
same MD5 hash value or MD5-based digital signature. See Section 5.4 for
an example.
One can imagine two executables: a ‘good’ one (say Word.exe) and a bad
one (the attacker’s Worse.exe). A chosen-prefix collision for those executa-
bles is computed, and the collision-causing bitstrings are appended to both
executables. The resulting altered file Word.exe, functionally equivalent to
the original Word.exe, can be offered to a code signing program such as Mi-
crosoft’s Authenticode and receive an ‘official’ MD5-based digital signature.
This signature will then be equally valid for the attacker’s Worse.exe, and
the attacker might be able to replace Word.exe by his Worse.exe (renamed
to Word.exe) on the appropriate download site. This construction affects a
common functionality of MD5 hashing and may pose a practical threat. It
also allows people to get many executables signed at once and for free by
getting a single executable signed, bypassing verification of any kind (e.g. au-
thenticity, quality, compatibility, non-spyware, non-malware) by the signing
party.

Computer forensics. In computer forensics so-called hash sets are used to
quickly identify known files. For example, when a hard disk is seized by law
enforcement officers, they may compute the hashes of all files on the disk, and
compare those hashes to hashes in existing hash sets: a whitelist (for known
harmless files such as operating system and other common software files) and
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a blacklist (for previously identified harmful files). Only files whose hashes
do not occur in either hash set have to be inspected further. A useful feature
of this method of recognizing files is that the file name itself is irrelevant,
since only the content of the file is hashed.
MD5 is a popular hash function for this application. Examples are NIST’s
National Software Reference Library Reference Data Set (http://www.nsrl.
nist.gov/) and the US Department of Justice’s Hashkeeper application
(http://www.usdoj.gov/ndic/domex/hashkeeper.htm).
A conceivable, and rather obvious, attack on this application of hashes is to
produce a harmless file (e.g. an innocent picture) and a harmful one (e.g.
an illegal picture), and insert collision blocks that will not be noticed by
common application software or human viewers. In a learning phase the
harmless file might be submitted to the hash set and thus the common hash
may end up on the whitelist. The harmful file will be overlooked from then
on.

Peer to peer software. Hash sets are also used in peer to peer software. A
site offering content may maintain a list of pairs (file name, hash). The file
name is local only, and the peer to peer software uniquely identifies the
file’s content by means of its hash. Depending on how the hash is computed
such systems may be vulnerable to a chosen-prefix attack. Software such as
eDonkey and eMule use MD4 to hash the content in a two stage manner:
the identifier of the content c1‖c2‖ . . . ‖cn is MD4(MD4(c1)‖ . . . ‖MD4(cn)),
where the chunks ci are about 9 MB each. One-chunk files, i.e., files not
larger than 9 MB, are most likely vulnerable; whether multi-chunk files are
vulnerable is open for research. We have not worked out the details of a
chosen-prefix collision attack against MD4, but this seems very well doable
by adapting our methods and should result in an attack that is considerably
faster than our present one against MD5.

Content addressed storage. In recent years content addressed storage is gain-
ing popularity as a means of storing fixed content at a physical location of
which the address is directly derived from the content itself. For example, a
hash of the content may be used as the file name. See [24] for an example.
Clearly, chosen-prefix collisions can be used by an attacker to fool such stor-
age systems, e.g. by first preparing colliding pairs of files, by then storing the
harmless-looking first one, and later overwriting it with the harmful second
one.

Further investigations are required to assess the impact of chosen-prefix colli-
sions. We leave it to others to study to what extent commonly used protocols
and message formats such as TLS, S/MIME (CMS), IPSec and XML Signatures
(see [1] and [13]) allow insertion of random looking data that may be overlooked
by some or all implementations. The threat posed by identical-prefix collisions is
not well understood either: their application may be more limited, but for MD5
they can be generated almost instantaneously and thus allow real-time attacks
on the execution of cryptographic protocols, and, more importantly, for SHA-1
they may soon be feasible.
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5.2 Creating a rogue Certification Authority certificate

This section contains an in-depth discussion of the practical dangers posed by
rogue Certification Authority certificates, followed by a detailed description of
how we managed to construct such a certificate.

The work reported here was carried out in close collaboration with Alexan-
der Sotirov and Dag Arne Osvik, and was triggered by email exchanges with
Alexander Sotirov, Jacob Appelbaum and David Molnar.

5.2.1 Attack potential of rogue CA certificates
In the conference version [29, Section 4.1] of this paper we daydreamed:

“Ideally, a realistic attack targets the core of PKI: provide a relying party
with trust, beyond reasonable cryptographic doubt, that the person in-
dicated by the Distinguished Name field has exclusive control over the
private key corresponding to the public key in the certificate. The attack
should also enable the attacker to cover his trails.”

Our dream scenario has been, mostly, realized with the construction of a rogue
CA certificate. With the private key of a CA under our control, and the public
key appearing in a certificate with a valid signature of a commercial CA that is
trusted by all major browsers, we can create ‘trusted’ certificates at will. When
scrutinized at bit level, however, our rogue CA certificate may look suspicious
which may, ultimately, expose us. Bit level inspection is not something many
users will engage in – if they know the difference between https and http to
begin with – and, obviously, the software that is supposed to inspect a certifi-
cate’s bits is expertly guided around the suspicious ones. So, it may be argued
that our construction has a non-negligible attack potential. Below we discuss
some possibilities in this direction. Upfront, however, we like to point out that
our rogue CA is nothing more than a proof of concept that is incapable of doing
much harm, because it expired, on purpose, in September of 2004, i.e., more
than 4 years before it was created.

Any website secured using TLS can be impersonated using a rogue certificate
issued by a rogue CA. This is irrespective of which CA issued the website’s true
certificate and of any property of that certificate (such as the hash function it is
based upon – SHA-256 is not any better in this context than MD4). Combined
with redirection attacks where http requests are redirected to rogue web servers,
this leads to virtually undetectable phishing attacks.

But any application involving a Certification Authority that provides MD5-
based certificates with sufficiently predictable serial number and validity period
may be vulnerable. In contexts different from TLS this may include signing or
encryption of e-mail or software, non-repudiation services, etc.

As pointed out earlier, bit-level inspection of our rogue CA certificate will
reveal a relatively large number of bits that may look suspicious – and that are
suspicious. This could have been avoided if we had chosen to create a rogue
certificate for a regular website, as opposed to a rogue CA certificate, because in
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that case we could have hidden all collision causing bits inside the public keys.
Nevertheless, even if each resulting certificate by itself looks unsuspicious, as soon
as a dispute arises, the rogue certificate’s legitimate sibling can be located with
the help of the CA, and the fraud becomes apparent by putting the certificates
alongside, thus exposing the party responsible for the fraud.

Our attack relies on our ability to predict the content of the certificate fields
inserted by the CA upon certification: if our prediction is correct with non-
negligible probability, a rogue certificate can be generated with the same non-
negligible probability. Irrespective of the weaknesses, known or unknown, of the
cryptographic hash function used for digital signature generation, our type of
attack becomes effectively impossible if the CA adds a sufficient amount of fresh
randomness to the certificate fields before the public key fields. Relying parties,
however, cannot verify this randomness and also the trustworthiness of certifi-
cates should not crucially depend on such secondary and circumstantial aspects.
We would be in favor of a more fundamental solution – along with a strong
cryptographic hash function – possibly along the lines as proposed in [11]. Gen-
erally speaking, it is advisable not to sign data that is completely determined
by some other party. Put differently, a signer should always make a few trivial
and unpredictable modifications before digitally signing a document provided by
someone else.

Based on our previous work [29], the issue in the previous paragraph was rec-
ognized and the possibility of the attack presented in this paper anticipated in the
catalogue [3] of algorithms suitable for the German Signature Law (‘Signaturge-
setz’). This catalogue includes conditions and time frames for cryptographic hash
algorithms to be used in legally binding digital signatures in Germany. One of
the changes introduced in the 2008 version of the catalog is an explicit condition
on the usage of SHA-1: only until 2010, and only for so-called “qualified certifi-
cates” that contain at least 20 bits of entropy in their serial numbers. We are
grateful to Prof. Werner Schindler of the BSI for bringing this to our attention
and for confirming that this change was introduced to thwart exactly the type
of rogue certificates that we present here for MD5. Currently the complexity of
identical-prefix collisions for SHA-1 is rumored to hover around 252 compression
function calls. It is unlikely it will again inch up from there, but may instead
tumble down even further: given the flux in SHA-1 cryptanalysis, 20 bits of
additional entropy may not suffice for much longer to even approach SHA-1’s
intended 80 bits of security.

We stress that our attack on MD5 is not a preimage or second preimage
attack. We cannot create a rogue certificate having a signature in common with
a certificate that was not especially crafted using our chosen-prefix collision. In
particular, we cannot target any existing, independently created certificate and
forge a rogue certificate that shares its digital signature with the digital signature
of the targeted certificate. However, given any certificate with an MD5-based
digital signature, a relying party cannot easily recognize if it is trustworthy
or, on the contrary, crafted by our method. Therefore we repeat our urgent
recommendation not to use MD5 for new X.509 certificates. How existing MD5
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certificates should be handled is a subject of further research. We also urgently
recommend to reconsider usage of MD5 in other applications. Proper alternatives
are available; but compatibility with existing applications is obviously another
matter. Given potential developments related to SHA-1 (see [4] and http://

www.iaik.tugraz.at/content/research/krypto/sha1/) we feel that usage of
SHA-1 in certificate generation should be reassessed as well.

5.2.2 Certificate construction
Our first colliding X.509 certificate construction was based on an identical-prefix
collision, and resulted in two certificates with different public keys, but identical
Distinguished Name fields [18]. As a first application of chosen-prefix collisions we
showed how the Distinguished Name fields could be chosen differently as well [29].
In this section we describe the details of a colliding certificate construction that
goes one step further by also allowing different “basic constraints” fields. This
allows us to construct one of the certificates as an ordinary website certificate,
but the other one as a CA certificate. As already pointed out in Section 5.1,
this additional difference required a radical departure from our traditional con-
struction method from [18] and [29]. Furthermore, unlike our previous colliding
certificate constructions where the CA was under our control, a commercial CA
provided the digital signature for the (legitimate) website certificate. This re-
quired us to sufficiently accurately predict its serial number and validity period
well before the certification request was submitted to the signing CA.

We exploited the following weaknesses of the commercial CA that carried
out the legitimate certification request:

– Its usage of the cryptographic hash function MD5 to generate digital signa-
tures for new certificates.

– Its fully automated way to process online certification requests that fails to
recognize anomalous behavior of requesting parties.

– Its usage of sequential serial numbers and its usage of validity periods that
are determined entirely by the date and time in seconds at which the certi-
fication request is processed.

– Its failure to enforce, by means of the “basic constraints” field in its own
certificate, a limit on the length of the chain of certificates that it can sign.

The first three points are further discussed below. The last point, if properly
handled, could have crippled our rogue CA certificate but does not affect its
construction. A certificate contains a “basic constraints” field where a bit is
set to indicate if the certificate is a CA certificate. With the bit set, a “path
length constraint” subfield may be present, specifying an integer that indicates
how many CAs may occur in the chain between the CA certificate in question
and end-user certificates. The commercial CA that we interacted with failed to
use this option in its own certificate, implying that any number of intermediate
CAs is permitted. If the “path length constraint” would have been present and
set at 0 (zero), then our rogue CA certificate could still have been constructed.
But whether or not the rogue CA certificate or certificates signed by it can
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then also be used depends on (browser-)software actually checking the “path
length constraint” subfields in chains of certificates. Thus a secondary “defense
in depth” mechanism was present that could have foiled our attack, but failed
to do so simply because it was not used.

Before describing the construction of the colliding certificates, we briefly
discuss the parameter choices used for the chosen-prefix collision search. The
2048-bit upper bound on the length of RSA moduli, as enforced by some CAs,
combined with other limitations of our certificate construction, implied we could
allow for at most 3 near-collision blocks. Opting for the least difficult possibil-
ity (namely, 3 near-collision blocks), we had to decide on values for k and the
aimed for value for w, determining the costs of the birthday search and the near-
collision block constructions (cf. Sections 4.2 and 4.1), respectively. Obviously,
our choices were influenced by our computational resources, namely a cluster of
215 PlayStation 3 (PS3) game consoles. When running Linux on a PS3, appli-
cations have access to 6 Synergistic Processing Units (SPUs), a general purpose
CPU, and about 150MB of RAM per PS3. For the birthday search, the 6× 215
SPUs are computationally equivalent to approximately 8600 regular 32-bit cores,
due to each SPU’s 4 × 32-bit wide SIMD architecture. The other parts of the
chosen-prefix collision construction are not suitable for the SPUs, but we were
able to use the 215 PS3 CPUs for the construction of the actual near-collision
blocks. With these resources, the choice w = 5 still turned out to be accept-
able despite the 1000-fold increase in the cost of the actual near-collision block
construction. This is the case even for the hard cases with many differences
between IHV and IHV′: as a consequence the differential paths contain many
bitconditions, which leaves little space for the tunnels, thereby complicating the
near-collision block construction.

For the targeted 3 near-collision blocks, the entries for w = 5 in the first table
in Appendix C show the time-memory tradeoff when the birthday search space
is varied with k. With 150MB at our disposal per PS3, for a total of about 30GB,
we decided to use k = 8 as this optimizes the overall birthday complexity for
the plausible case that the birthday search takes

√
2 times longer than expected.

The resulting overall chosen-prefix collision construction takes on average less
than a day on the PS3-cluster. In theory we could have used 1TB (or more) of
hard drive space, in which case it would have been optimal to use k = 0 for a
birthday search of about 20 PS3 days.

We summarize the construction of the colliding certificates in the sequence
of steps below, and then describe each step in more detail.

1. Construction of templates for the two to-be-signed parts, as outlined in Fig-
ure 4. Note that we distinguish between a ‘legitimate’ to-be-signed part on
the left hand side, and a ‘rogue’ to-be-signed part on other side.

2. Prediction of serial number and validity period for the legitimate part,
thereby completing the chosen prefixes of both to-be-signed parts.

3. Computation of the two different collision-causing appendages.
4. Computation of a single collision-maintaining appendage that will be ap-

pended to both sides, thereby completing both to-be-signed parts.
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5. Preparation of the certification request for the legitimate to-be-signed part.
6. Submission of the certification request and receipt of the new certificate.
7. If serial number and validity period of the newly received certificate are as

predicted, then the rogue certificate can be completed. Otherwise return to
Step 2.

serial number

validity period
commercial CA name

domain name

2048 bit RSA public key

serial number

validity period
commercial CA name

rogue CA name
1024 bit RSA public key

legitimate website 
certificate rogue CA certificate

chosen prefixes

collision bits

identical suffixes

v3 extensions

tumor

“CA = TRUE”

v3 extensions
“CA = FALSE”

Fig. 4. The to-be-signed parts of the colliding certificates.

Step 1. Templates for the to-be-signed parts. In this step all bits are set
in the two to-be-signed parts, except for bits that will be determined in later
steps. For the latter bits space will be reserved here. On the legitimate side the
parts to be filled in later are the predictions for the serial number and validity
period, and most bits of the public key. On the rogue side the largest part of the
content of an extension field of the type “Netscape Comment” is for the moment
left undetermined. The following roughly describes the sequence of steps.

– On the legitimate side, the chosen prefix contains space for serial number and
validity period, along with the exact Distinguished Name of the commercial
CA where the certification request will be submitted. This is followed by
a subject Distinguished Name that contains a legitimate website domain
name (owned by one of us) consisting of as many characters as allowed by
the commercial CA (in our case 64), and concluded by the first 208 bits of an
RSA modulus, the latter all chosen at random after the leading ‘1’-bit. These
sizes were chosen in order to have as many corresponding bits as possible on
the rogue side, while fixing as few bits as possible of the RSA modulus on
the legitimate side (see Step 4 for the reason why).

– The corresponding bits on the rogue side contain an arbitrarily chosen serial
number, the same commercial CA’s Distinguished Name, an arbitrarily cho-
sen validity period (actually chosen as indicating “August 2004”, to avoid
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abuse of the rogue certificate), a short rogue CA name, a 1024-bit RSA pub-
lic key generated using standard software, and the beginning of the X.509v3
extension fields. One of these fields is the “basic constraints” field, a bit
that we set to indicate that the rogue certificate will be a CA certificate (in
Figure 4 this bit is denoted by “CA=TRUE”).

– At this point the entire chosen prefix is known on the rogue side, but on
the legitimate side predictions for the serial number and validity period still
need to be inserted. That will be done in Step 2.

– The various field sizes were selected so that on both sides the chosen prefixes
are now 96 bits short of the same MD5 block boundary. On both sides these
96 bit positions are reserved for the birthday bits. As only 64 + k = 72
birthday search bits per side will be needed (and appended in Step 3) the
first 24 bits at this point are set to 0. On the legitimate side these 96 bits are
part of the RSA modulus, on the rogue side they are part of an extension
field of the type “Netscape Comment”, denoted as ‘tumor’ in Figure 4.

– From here on forward, everything that goes to the rogue side is part of
the “Netscape Comment” field, as it is not meaningful for the rogue CA
certificate but only appended to cause and maintain a collision with bits
added to the legitimate side. On the legitimate side we first make space
for 3 near-collision blocks of 512 bits each (calculated in Step 3) and for 208
bits used to complete a 2048-bit RSA modulus (determined in Step 4), and
then set the RSA public exponent (for which we took the common choice
65537) and the X.509v3 extensions including the bit indicating that the
legitimate certificate will be an end-user certificate (in Figure 4 denoted by
“CA=FALSE”).

Step 2. Prediction of serial number and validity period. Based on re-
peated certification requests submitted to the targeted commercial CA, it turned
out that the validity period can very reliably be predicted as the period of pre-
cisely one year plus one day, starting exactly six seconds after a request is sub-
mitted. So, to control that field, all we need to do is select a validity period
of the right length, and submit the legitimate certification request precisely six
seconds before it starts. Though occasional accidents may happen in the form
of one-second shifts, this was the easy part.

Predicting the serial number is harder but not impossible. In the first place, it
was found that the targeted commercial CA uses sequential serial numbers. Being
able to predict the next serial number, however, is not enough: the construction of
the collision can be expected to take at least a day, before which the serial number
and validity period have to be fixed, and only after which the to-be-signed part
of the certificate will be entirely known. As a consequence, there will have been a
substantial and uncertain increment in the serial number by the time the collision
construction is finished. So, another essential ingredient of our construction was
the fact that the CA’s weekend workload is quite stable: it was observed during
several weekends that the increment in serial number over a weekend does not
vary a lot. This allowed us to pretty reliably predict Monday morning’s serial
numbers on the Friday afternoon before. Thus, on Friday afternoon we selected
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a number at the high end of the predicted range for the next Monday morning,
and inserted it in the legitimate to-be-signed part along with a validity period
starting that same Monday morning at the time corresponding to our serial
number prediction. See Step 6 how we then managed, after the weekend, to
target precisely the selected serial number and validity period.

Step 3. Computation of the collision. At this point both chosen prefixes
have been fully determined so the chosen-prefix collision can be computed: first
the 72 birthday bits per side, calculated in parallel on the 1290 SPUs of a cluster
of 215 PS3s, followed by the calculation of 3 pairs of 512-bit near-collision blocks
on the 215 PS3 CPUs. The entire calculation takes on average about a day.

Given that we had a weekend available, and that the calculation can be ex-
pected to take just a day, we sequentially processed a number of chosen-prefixes,
each corresponding to different serial numbers and validity periods (targeting
both Monday and Tuesday mornings). So, a near-collision block calculation on
the CPUs would always run simultaneously with a birthday search on the SPUs
for the ‘next’ attempt.

Step 4. Finishing the to-be-signed parts. At this point the legitimate and
rogue sides collide under MD5, so that from here on only identical bits may be
appended to both sides.

With 208 + 24 + 72 + 3 ∗ 512 = 1840 bits set, the remaining 2048 − 1840 =
208 bits need to be set for the 2048-bit RSA modulus on the legitimate side.
Since in the next step the RSA private exponent corresponding to the RSA
public exponent is needed, the full factorization of the RSA modulus needs to
be known, and the factors must be compatible with the choice of the RSA public
exponent. Common CAs (including our targeted commercial CA) do not check
for compositeness of RSA moduli in certification requests, implying that we could
simply have added 208 bits to make the RSA modulus a prime. We found that
approach unsatisfactory, and opted for the rather crude but trivial to program
method sketched below that results in a 224-bit prime factor with a prime 1824-
bit cofactor. Given that at the time this work was done the largest factor found
using the elliptic curve integer factorization method was 222 bits long, a 224-
bit smallest prime factor keeps the resulting modulus out of reach of common
factoring efforts. We could have used a relatively advanced lattice-based method
to try and squeeze in a 312-bit prime factor along with a prime 1736-bit cofactor.
Given only 208 bits of freedom to select a 2048-bit RSA modulus, it is unlikely
that a more balanced solution can efficiently be found. Thus the reason why as
few bits as possible should be fixed in Step 1, is that it allows us to construct a
slightly less unbalanced RSA modulus.

Let N be the 2048-bit integer consisting of the 1840 already determined bits
of the RSA modulus-to-be, followed by 208 one bits. We select a 224-bit integer p
at random until N mod p is less than 2208, and keep doing this until both p and
q = bN/pc are prime and the RSA public exponent is coprime to (p− 1)(q− 1).
Once such primes p and q have been found, the number pq will be the legitimate
side’s RSA modulus, the leading 1840 bits of which are already present in the
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legitimate side’s to-be-signed part, and the 208 least significant bits of which are
inserted in both to-be-signed parts.

To analyse the required effort somewhat more in general, 2k−208 integers of
k bits (with k > 208) need to be selected on average for pq to have the desired
1840 leading bits. Since an `-bit integer is prime with probability approximately
1/ log(2`), a total of k(2048− k)2k−208(log 2)2 attempts may be expected before
a suitable RSA modulus is found. The coprimality requirement is a lower order
effect that we disregard. Note that for k(k − 2048)(log 2)2 of the attempts the
k-bit number p has to be tested for primality, and that for (2048 − k) log 2 of
those q needs to be tested as well (on average, obviously). For k = 224 this
turned out to be doable in a few minutes on a standard PC.

This completes the to-be-signed parts on both sides. Now it remains to be
hoped that the legitimate part that actually will be signed corresponds, bit for
bit, with the legitimate to-be-signed part that we concocted.

Step 5. Preparing the certification request. Using the relevant information
from the legitimate side’s template, i.e., the subject Distinguished Name and
the public key, a PKCS#10 Certificate Signing Request is prepared. The CA
requires proof of possession of the private key corresponding to the public key
in the request. This is done by signing the request using the private key – this
is the sole reason that we need the RSA private exponent.

Step 6. Submission of the certification request. The targeted legitimate
to-be-signed part contains a very specific validity period that leaves no choice for
the moment at which the certification request needs to be submitted to the CA.
Just hoping that at that time the serial number would have precisely the pre-
dicted value is unlikely to work, so a somewhat more elaborate approach is used.
About half an hour before the targeted submission moment, the same request
is submitted, and the serial number in the resulting certificate is inspected. If
it is already too high, the entire attempt is abandoned. Otherwise, the request
is repeatedly submitted, with a frequency depending on the gap that may still
exist between the serial number received and the targeted one, and taking into
account possible certification requests by others. In this way the serial number
is slowly nudged toward the right value at the right time. Although there is
nothing illegal about repeated certification requests, it should be possible for a
CA to recognize the somewhat anomalous behavior sketched above and to take
appropriate countermeasures (such as random delays or jumps in serial numbers)
if it occurs.

Various types of accidents may happen, of course, and we experienced some
of them, such as another CA customer ‘stealing’ our targeted serial number just
a few moments before our attempt to get it, thereby wasting that weekend’s cal-
culations. But, after the fourth weekend it worked as planned, and we managed
to get an actually signed part that exactly matched our predicted legitimate
to-be-signed part.

Step 7. Creation of the rogue certificate. Given the perfect match between
the actually signed part and the hoped for one, and the MD5 collision between
the latter and the rogue side’s to-be-signed part, the MD5-based digital signature
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present in the legitimate certificate as provided by the commercial CA is equally
valid for the rogue side. To finish the rogue CA certificate it suffices to copy the
digital signature to the right spot in the rogue CA certificate.

The full details of the above construction, including both certificates, can be
found on http://www.win.tue.nl/hashclash/rogue-ca/.

5.3 Nostradamus attack

In the original Nostradamus attack from [15] one first commits to a certain
hash value, and afterwards for any message constructs a document that not only
contains that message but that also has under MD5 the committed hash value.
So far, this attack is, in its full generality, infeasible for MD5 because space
and time requirements are beyond what can be handled at his point. It is easily
doable, though, if a limited size message space has been defined upfront.

Suppose there are messages m1,m2, . . . ,mr, then using r − 1 chosen-prefix
collisions we can construct r suffixes s1, s2, . . . , sr such that the r documents di =
mi‖si all have the same hash. After committing to the common hash, afterwards
any of the r documents d1, d2, . . . , dr can be shown, possibly to achieve some
malicious goal. The other documents will remain hidden and their contents, i.e.,
the mi-parts, cannot be derived – with overwhelming probability – from the
single published document or from the common hash value.

To show the practicality of this variant, we have made an example consisting
of 12 different PDF documents with a common MD5-hash, where each document
predicts a different outcome of the 2008 US presidential elections. The PDF
format is convenient for this purpose because it allows insertion of extra image
objects that are unreferenced in the resulting document and thus invisible in any
common PDF reader. See the next section for more on the PDF related details
of the construction and http://www.win.tue.nl/hashclash/Nostradamus/ for
the actual documents, one of which correctly predicted the outcome one year
before the elections took place. For each of the 11 collisions required for this
example we used a 64-bit birthday search (on a single PS3) aiming for about 11
near-collision blocks (constructed on a quad-core PC). It took less than 2 days
per chosen-prefix collision. Since we performed those computations our methods
have improved as described in this paper, so this attack would now run much
faster.

5.3.1 PDF construction
Given the structure of PDF documents it is not entirely straightforward how to
insert different chosen-prefix collision blocks, while keeping the parts following
those blocks identical in order to maintain the collision. The relevant details of
both the PDF structure and our construction are covered here.

A PDF document is built up from the following 4 consecutive parts: a fixed
header, a part consisting of an arbitrary number of numbered objects, an object
lookup table and, finally, a trailer. The trailer specifies the number of objects,
which of the objects is the unique root object (containing the document content)
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and which is the info object (containing the document’s meta information such
as authors and title etc.), and contains a filepointer to the start of the object
lookup table.

Given a file containing a PDF document, additional numbered objects can
be inserted, as long as they are added to the object lookup table and the corre-
sponding changes are made to the number of objects and the filepointer in the
trailer. A template for an image object is given in Table 5-1. With the excep-
tion of the binary image, the format is entirely text based. The binary image is
put between single line-feed characters (ASCII code 10) and the result is encap-
sulated by the keywords stream and endstream. The keyword /Length must
specify the byte length of the image. As the image is uncompressed and each
pixel requires three bytes (‘RGB’), the image byte length must be three times
the product of the specified width and height. The object number (42 in the
example object header) must be set to the next available object number.

Table 5-1. A numbered image object in the PDF format.

Part Contents

object header 42 0 obj

image header << /ColorSpace /DeviceRGB /Subtype /Image

image size /Length 9216 /Width 64 /Height 48 /BitsPerComponent 8

image contents >> stream...endstream

object footer endobj

When constructing colliding PDF files they must be equal after the collision-
causing data (cf. the “suffix” in Figure 2). The object lookup tables and trailers
for all files must therefore be the same. This was achieved as follows:

– As all documents must have the same number of objects, dummy objects
are inserted where necessary.

– Since all root objects must have the same object number, they can be copied
if necessary to objects with the next available object number.

– The info objects are treated in the same way as the root objects.
– To make sure that all object lookup tables and filepointers are identical, the

objects can be sorted by object number and if necessary padded with spaces
after their obj keyword to make sure that all objects with the same object
number have the same file position and byte length in all files.

– Finally, the object lookup tables and trailers need to be adapted to reflect
the new situation – as a result they should be identical for all files.

Although this procedure works for basic PDF files (such as PDF version 1.4 as
we produced using pdflatex), it should be noted that the PDF document format
allows additional features that may cause obstructions, the details of which are
irrelevant for this article.

Given r LATEX files with the desired subtle differences (such as names of r
different candidates), r different PDF files are produced using a version of LATEX
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that is suitable for our purposes (cf. above). In all these files a hidden image
object with a fixed object number is then inserted, and the approach sketched
above is followed to make the lookup tables and trailers for all files identical.
To ensure that the files are identical after the hidden image contents, their
corresponding objects were made the last objects in the files. This then leads
to r chosen prefixes consisting of the leading parts of the PDF files up to and
including the keyword stream and the first line-feed character. After determining
r − 1 chosen-prefix collisions resulting in r collision-causing appendages, the
appendages are put in the proper binary image parts, after which all files are
completed with a line-feed character, the keywords endstream and endobj, and
the identical lookup tables and trailers.

Note that the Length etc. fields have to be set before collision finding, and
that the value of Length will grow logarithmically with r and linearly in the
number of near-collision blocks one is aiming for.

5.4 Colliding executables

Using the same set-up as used for the Nostradamus attack reported in Sec-
tion 5.3, i.e., 64-bit birthday searching on a PS3 followed by the construction of
about 12 near-collision blocks on a quad-core PC, it took us less than 2 days to
create two different Windows executables with the same MD5 hash.

48



Initially both 40960 bytes large, 13 × 64 bytes had to be appended to each
executable, for a resulting size of just 41792 bytes each, to let the files collide
under MD5 without changing their functionality. See http://www.win.tue.nl/

hashclash/SoftIntCodeSign/ for details. As noted above, it has been shown
on http://blog.didierstevens.com/2009/01/17/ that this attack can be el-
evated to one on a code signing scheme.

As usual, the following remarks apply:

– An existing executable with a known and published hash value not resulting
from this construction cannot be targeted by this attack (cf. [9]): our attack
is not a preimage or second preimage attack. In order to attack a software
integrity protection or code signing scheme using this approach, the attacker
must be able to manipulate the files before they are hashed (and, possibly,
signed). Given the level of access required to realize the attack an attacker
can probably do more harm in other simpler and more traditional ways.

– On the other hand, there is no guarantee that a downloaded file with the
proper hash or correct signature is not the evil sibling of the intended file.
Especially when software integrity verification takes place under the hood,
users may be lured into installing – and trusting – malware. Until a tool is
available that would also be able to distinguish potentially malicious MD5-
based certificates, all a relying party can do is resorting to bit-level inspection
of each executable; the latter requires more expertise than most users can
be expected to have, in particular if the collision blocks are hidden at a less
conspicious place than at the very end of the executable.

– Any number r of executables can be made to collide, at the cost of r − 1
chosen-prefix collisions and an O(log r)-byte appendage to each of the r
original executables.

A countermeasure thwarting our attack would be the inclusion of a self-checking
component in software, i.e., where the software would check the integrity of its
own executable as the first step of the execution. It is better, however, not to rely
on cryptographic primitives such as MD5 that fail to meet their design criteria.
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A MD5 compression function constants

Table A-1. MD5 Addition and Rotation Constants and message block expan-
sion.

t ACt RCt Wt

0 d76aa47816 7 m0

1 e8c7b75616 12 m1

2 242070db16 17 m2

3 c1bdceee16 22 m3

4 f57c0faf16 7 m4

5 4787c62a16 12 m5

6 a830461316 17 m6

7 fd46950116 22 m7

8 698098d816 7 m8

9 8b44f7af16 12 m9

10 ffff5bb116 17 m10

11 895cd7be16 22 m11

12 6b90112216 7 m12

13 fd98719316 12 m13

14 a679438e16 17 m14

15 49b4082116 22 m15

t ACt RCt Wt

16 f61e256216 5 m1

17 c040b34016 9 m6

18 265e5a5116 14 m11

19 e9b6c7aa16 20 m0

20 d62f105d16 5 m5

21 0244145316 9 m10

22 d8a1e68116 14 m15

23 e7d3fbc816 20 m4

24 21e1cde616 5 m9

25 c33707d616 9 m14

26 f4d50d8716 14 m3

27 455a14ed16 20 m8

28 a9e3e90516 5 m13

29 fcefa3f816 9 m2

30 676f02d916 14 m7

31 8d2a4c8a16 20 m12

t ACt RCt Wt

32 fffa394216 4 m5

33 8771f68116 11 m8

34 6d9d612216 16 m11

35 fde5380c16 23 m14

36 a4beea4416 4 m1

37 4bdecfa916 11 m4

38 f6bb4b6016 16 m7

39 bebfbc7016 23 m10

40 289b7ec616 4 m13

41 eaa127fa16 11 m0

42 d4ef308516 16 m3

43 04881d0516 23 m6

44 d9d4d03916 4 m9

45 e6db99e516 11 m12

46 1fa27cf816 16 m15

47 c4ac566516 23 m2

t ACt RCt Wt

48 f429224416 6 m0

49 432aff9716 10 m7

50 ab9423a716 15 m14

51 fc93a03916 21 m5

52 655b59c316 6 m12

53 8f0ccc9216 10 m3

54 ffeff47d16 15 m10

55 85845dd116 21 m1

56 6fa87e4f16 6 m8

57 fe2ce6e016 10 m15

58 a301431416 15 m6

59 4e0811a116 21 m13

60 f7537e8216 6 m4

61 bd3af23516 10 m11

62 2ad7d2bb16 15 m2

63 eb86d39116 21 m9
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B Boolean Function Bitconditions

The 4 tables in this appendix correspond to rounds 1 through 4, respectively, i.e.,
0 ≤ t < 16, 16 ≤ t < 32, 32 ≤ t < 48 and 48 ≤ t < 64. The ‘abc’ in each of the
first columns denotes the three differential bitconditions (qt[i], qt−1[i], qt−2[i]) for
the relevant t and 0 ≤ i ≤ 31, with each table containing all 27 possible triples.
Columns 2, 3, 4 contain forward bitconditions FC(t, abc, g) for g = 0,+1,−1,
respectively, and columns 5, 6, 7 contain backward bitconditions BC(t, abc, g)
for those same g’s, respectively. The parenthesized number next to a triple def
is |Udef |, the amount of freedom left. An entry is left empty if g /∈ Vabc. See
section 4.4.3 for more details.

B.1 Bitconditions applied to boolean function F

Table B-1. Round 1 (0 ≤ t < 16) bitconditions applied to boolean function F :

F (X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z)

DB Forward bitconditions Backward bitconditions
abc g = 0 g = +1 g = −1 g = 0 g = +1 g = −1

... (8) ... (8) ... (8)

..+ (4) 1.+ (2) 0.+ (2) 1.+ (2) 0.+ (2)

..- (4) 1.- (2) 0.- (2) 1.- (2) 0.- (2)

.+. (4) 0+. (2) 1+. (2) 0+. (2) 1+. (2)

.++ (2) .++ (2) .++ (2)

.+- (2) 1+- (1) 0+- (1) 1+- (1) 0+- (1)

.-. (4) 0-. (2) 1-. (2) 0-. (2) 1-. (2)

.-+ (2) 0-+ (1) 1-+ (1) 0-+ (1) 1-+ (1)

.-- (2) .-- (2) .-- (2)
+.. (4) +.V (2) +10 (1) +01 (1) +^. (2) +10 (1) +01 (1)
+.+ (2) +0+ (1) +1+ (1) +0+ (1) +1+ (1)
+.- (2) +1- (1) +0- (1) +1- (1) +0- (1)
++. (2) ++1 (1) ++0 (1) ++1 (1) ++0 (1)
+++ (1) +++ (1) +++ (1)
++- (1) ++- (1) ++- (1)
+-. (2) +-0 (1) +-1 (1) +-0 (1) +-1 (1)
+-+ (1) +-+ (1) +-+ (1)
+-- (1) +-- (1) +-- (1)
-.. (4) -.V (2) -01 (1) -10 (1) -^. (2) -01 (1) -10 (1)
-.+ (2) -1+ (1) -0+ (1) -1+ (1) -0+ (1)
-.- (2) -0- (1) -1- (1) -0- (1) -1- (1)
-+. (2) -+0 (1) -+1 (1) -+0 (1) -+1 (1)
-++ (1) -++ (1) -++ (1)
-+- (1) -+- (1) -+- (1)
--. (2) --1 (1) --0 (1) --1 (1) --0 (1)
--+ (1) --+ (1) --+ (1)
--- (1) --- (1) --- (1)
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B.2 Bitconditions applied to boolean function G

Table B-2. Round 2 (16 ≤ t < 32) bitconditions applied to boolean function G:

G(X,Y, Z) = (Z ∧X)⊕ (Z ∧ Y )

DB Forward bitconditions Backward bitconditions
abc g = 0 g = +1 g = −1 g = 0 g = +1 g = −1

... (8) ... (8) ... (8)

..+ (4) .V+ (2) 10+ (1) 01+ (1) ^.+ (2) 10+ (1) 01+ (1)

..- (4) .V- (2) 01- (1) 10- (1) ^.- (2) 01- (1) 10- (1)

.+. (4) .+1 (2) .+0 (2) .+1 (2) .+0 (2)

.++ (2) 0++ (1) 1++ (1) 0++ (1) 1++ (1)

.+- (2) 1+- (1) 0+- (1) 1+- (1) 0+- (1)

.-. (4) .-1 (2) .-0 (2) .-1 (2) .-0 (2)

.-+ (2) 1-+ (1) 0-+ (1) 1-+ (1) 0-+ (1)

.-- (2) 0-- (1) 1-- (1) 0-- (1) 1-- (1)
+.. (4) +.0 (2) +.1 (2) +.0 (2) +.1 (2)
+.+ (2) +1+ (1) +0+ (1) +1+ (1) +0+ (1)
+.- (2) +0- (1) +1- (1) +0- (1) +1- (1)
++. (2) ++. (2) ++. (2)
+++ (1) +++ (1) +++ (1)
++- (1) ++- (1) ++- (1)
+-. (2) +-1 (1) +-0 (1) +-1 (1) +-0 (1)
+-+ (1) +-+ (1) +-+ (1)
+-- (1) +-- (1) +-- (1)
-.. (4) -.0 (2) -.1 (2) -.0 (2) -.1 (2)
-.+ (2) -0+ (1) -1+ (1) -0+ (1) -1+ (1)
-.- (2) -1- (1) -0- (1) -1- (1) -0- (1)
-+. (2) -+0 (1) -+1 (1) -+0 (1) -+1 (1)
-++ (1) -++ (1) -++ (1)
-+- (1) -+- (1) -+- (1)
--. (2) --. (2) --. (2)
--+ (1) --+ (1) --+ (1)
--- (1) --- (1) --- (1)

54



B.3 Bitconditions applied to boolean function H

Table B-3. Round 3 (32 ≤ t < 48) bitconditions applied to boolean function H:

H(X,Y, Z) = X ⊕ Y ⊕ Z

DB Forward bitconditions Backward bitconditions
abc g = 0 g = +1 g = −1 g = 0 g = +1 g = −1

... (8) ... (8) ... (8)

..+ (4) .V+ (2) .Y+ (2) ^.+ (2) !.+ (2)

..- (4) .Y- (2) .V- (2) !.- (2) ^.- (2)

.+. (4) .+W (2) .+H (2) m+. (2) #+. (2)

.++ (2) .++ (2) .++ (2)

.+- (2) .+- (2) .+- (2)

.-. (4) .-H (2) .-W (2) #-. (2) m-. (2)

.-+ (2) .-+ (2) .-+ (2)

.-- (2) .-- (2) .-- (2)
+.. (4) +.V (2) +.Y (2) +^. (2) +!. (2)
+.+ (2) +.+ (2) +.+ (2)
+.- (2) +.- (2) +.- (2)
++. (2) ++. (2) ++. (2)
+++ (1) +++ (1) +++ (1)
++- (1) ++- (1) ++- (1)
+-. (2) +-. (2) +-. (2)
+-+ (1) +-+ (1) +-+ (1)
+-- (1) +-- (1) +-- (1)
-.. (4) -.Y (2) -.V (2) -!. (2) -^. (2)
-.+ (2) -.+ (2) -.+ (2)
-.- (2) -.- (2) -.- (2)
-+. (2) -+. (2) -+. (2)
-++ (1) -++ (1) -++ (1)
-+- (1) -+- (1) -+- (1)
--. (2) --. (2) --. (2)
--+ (1) --+ (1) --+ (1)
--- (1) --- (1) --- (1)
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B.4 Bitconditions applied to boolean function I

Table B-4. Round 4 (48 ≤ t < 64) bitconditions applied to boolean function I:

I(X,Y, Z) = Y ⊕ (X ∨ Z)

DB Forward bitconditions Backward bitconditions
abc g = 0 g = +1 g = −1 g = 0 g = +1 g = −1

... (8) ... (8) ... (8)

..+ (4) 1.+ (2) 01+ (1) 00+ (1) 1.+ (2) 01+ (1) 00+ (1)

..- (4) 1.- (2) 00- (1) 01- (1) 1.- (2) 00- (1) 01- (1)

.+. (4) 0+1 (1) .+Q (3) 0+1 (1) ?+. (3)

.++ (2) 0++ (1) 1++ (1) 0++ (1) 1++ (1)

.+- (2) 0+- (1) 1+- (1) 0+- (1) 1+- (1)

.-. (4) .-Q (3) 0-1 (1) ?-. (3) 0-1 (1)

.-+ (2) 0-+ (1) 1-+ (1) 0-+ (1) 1-+ (1)

.-- (2) 0-- (1) 1-- (1) 0-- (1) 1-- (1)
+.. (4) +.0 (2) +01 (1) +11 (1) +.0 (2) +01 (1) +11 (1)
+.+ (2) +.+ (2) +.+ (2)
+.- (2) +0- (1) +1- (1) +0- (1) +1- (1)
++. (2) ++1 (1) ++0 (1) ++1 (1) ++0 (1)
+++ (1) +++ (1) +++ (1)
++- (1) ++- (1) ++- (1)
+-. (2) +-1 (1) +-0 (1) +-1 (1) +-0 (1)
+-+ (1) +-+ (1) +-+ (1)
+-- (1) +-- (1) +-- (1)
-.. (4) -.0 (2) -11 (1) -01 (1) -.0 (2) -11 (1) -01 (1)
-.+ (2) -1+ (1) -0+ (1) -1+ (1) -0+ (1)
-.- (2) -.- (2) -.- (2)
-+. (2) -+1 (1) -+0 (1) -+1 (1) -+0 (1)
-++ (1) -++ (1) -++ (1)
-+- (1) -+- (1) -+- (1)
--. (2) --1 (1) --0 (1) --1 (1) --0 (1)
--+ (1) --+ (1) --+ (1)
--- (1) --- (1) --- (1)
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C Birthday Cost

In this appendix notation and variables are as in Section 4.2. The columns p,
Ctr and M denote the values − log2(pr,k,w), log2(Ctr(r, k, w)) and the minimum
required memory such that Ccoll(r, k, w,M) ≤ Ctr(r, k, w), respectively.

r = 3 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0
4 34.01 51.33 2TB
8 33.42 53.03 748GB 31.31 51.98 174GB
12 34.01 55.33 2TB 32.42 54.53 374GB 30.55 53.6 103GB 28.24 52.44 21GB
16 31. 55.83 141GB 29.65 55.15 55GB 27.36 54.01 12GB 25.6 53.13 4GB
20 27.51 56.08 13GB 26.18 55.42 5GB 24.53 54.59 2GB 23.26 53.96 673MB
24 24.33 56.49 2GB 23.35 56. 714MB 22.17 55.41 315MB 21.19 54.92 160MB
28 21.11 56.88 152MB 20.56 56.6 103MB 19.98 56.32 70MB 19.57 56.11 52MB
32 17.88 57.26 17MB 17.88 57.27 17MB 17.89 57.27 17MB 17.88 57.27 17MB

r = 3 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 31.68 48.17 225GB 30.25 47.45 84GB 28.01 46.33 18GB
4 32.2 50.43 323GB 29.92 49.29 67GB 28.06 48.36 19GB 26.2 47.43 6GB
8 28.83 50.74 32GB 27.33 49.99 11GB 25.88 49.26 5GB 24.47 48.56 2GB
12 26.63 51.64 7GB 25.14 50.9 3GB 23.96 50.3 2GB 22.94 49.8 537MB
16 24.31 52.48 2GB 23.27 51.96 675MB 22.49 51.57 394MB 21.86 51.26 255MB
20 22.28 53.46 340MB 21.62 53.13 215MB 21.14 52.9 155MB 20.73 52.69 117MB
24 20.53 54.59 102MB 20.01 54.33 71MB 19.65 54.15 55MB 19.38 54.01 46MB
28 19.25 55.95 42MB 19.02 55.83 36MB 18.82 55.74 31MB 18.65 55.65 28MB
32 17.88 57.27 17MB 17.88 57.27 17MB 17.88 57.27 17MB 17.88 57.27 17MB

57



r = 4 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 34. 49.33 2TB 30.19 47.42 81GB
4 33.42 51.04 749GB 30.36 49.51 90GB 27.59 48.12 14GB
8 35. 53.83 3TB 30.3 51.48 87GB 27.21 49.93 11GB 24.87 48.76 2GB
12 29.58 53.12 53GB 27.53 52.09 13GB 24.59 50.62 2GB 22.47 49.56 388MB
16 26.26 53.45 6GB 24.36 52.51 2GB 22.06 51.36 292MB 20.38 50.51 91MB
20 23.16 53.91 628MB 21.5 53.08 199MB 19.72 52.19 58MB 18.54 51.6 26MB
24 20.25 54.45 84MB 19.09 53.87 38MB 17.8 53.23 16MB 16.86 52.76 8MB
28 17.26 54.95 11MB 16.63 54.64 7MB 16.02 54.34 5MB 15.6 54.13 4MB
32 14.29 55.47 2MB 14.29 55.47 2MB 14.29 55.47 2MB 14.29 55.47 2MB

r = 4 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 26.98 45.81 9GB 24.45 44.55 2GB 22.14 43.4 310MB 20.33 42.49 88MB
4 24.95 46.8 3GB 22.82 45.73 493MB 21.04 44.84 144MB 19.55 44.1 52MB
8 22.63 47.64 432MB 20.92 46.79 133MB 19.58 46.12 53MB 18.56 45.61 26MB
12 20.67 48.66 112MB 19.41 48.03 47MB 18.45 47.55 24MB 17.71 47.18 15MB
16 19.08 49.86 37MB 18.19 49.42 21MB 17.56 49.1 13MB 17.08 48.86 10MB
20 17.66 51.16 14MB 17.09 50.87 10MB 16.7 50.67 8MB 16.39 50.52 6MB
24 16.25 52.45 6MB 15.82 52.24 4MB 15.54 52.09 4MB 15.33 51.99 3MB
28 15.31 53.98 3MB 15.09 53.87 3MB 14.93 53.79 3MB 14.78 53.72 2MB
32 14.29 55.47 2MB 14.29 55.47 2MB 14.29 55.47 2MB 14.29 55.47 2MB

r = 5 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 35. 49.83 3TB 31.2 47.92 161GB 27.13 45.89 10GB 23.74 44.2 938MB
4 33.42 51.04 749GB 28.47 48.56 25GB 24.63 46.64 2GB 21.58 45.12 210MB
8 28.61 50.63 27GB 25.61 49.13 4GB 22. 47.33 280MB 19.39 46.02 46MB
12 25.43 51.04 3GB 22.74 49.7 468MB 19.66 48.15 56MB 17.53 47.09 13MB
16 22.36 51.51 360MB 20.02 50.34 72MB 17.59 49.12 14MB 15.95 48.3 5MB
20 19.38 52.01 46MB 17.48 51.07 13MB 15.67 50.16 4MB 14.55 49.6 2MB
24 16.68 52.66 7MB 15.35 52. 3MB 14.06 51.36 2MB 13.17 50.91 1MB
28 13.92 53.29 2MB 13.22 52.93 1MB 12.61 52.63 1MB 12.21 52.43 1MB
32 11.2 53.92 1MB 11.2 53.93 1MB 11.2 53.92 1MB 11.2 53.93 1MB

r = 5 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 20.53 42.59 102MB 18.03 41.34 18MB 16.17 40.41 5MB 14.92 39.79 3MB
4 18.94 43.79 34MB 17. 42.82 9MB 15.57 42.11 4MB 14.53 41.59 2MB
8 17.27 44.96 11MB 15.79 44.22 4MB 14.75 43.7 2MB 14.01 43.33 2MB
12 15.92 46.28 5MB 14.84 45.75 2MB 14.09 45.37 2MB 13.56 45.11 1MB
16 14.8 47.73 2MB 14.06 47.35 2MB 13.55 47.1 1MB 13.18 46.92 1MB
20 13.79 49.22 1MB 13.31 48.98 1MB 12.99 48.82 1MB 12.76 48.7 1MB
24 12.64 50.64 1MB 12.29 50.47 1MB 12.07 50.36 1MB 11.91 50.28 1MB
28 11.95 52.3 1MB 11.76 52.2 1MB 11.62 52.14 1MB 11.5 52.07 1MB
32 11.2 53.92 1MB 11.2 53.93 1MB 11.2 53.92 1MB 11.2 53.93 1MB
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r = 6 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 31.2 47.92 161GB 26.73 45.69 8GB 21.78 43.22 241MB 18.14 41.4 20MB
4 28.18 48.42 20GB 23.89 46.27 2GB 19.56 44.11 52MB 16.46 42.55 6MB
8 24.66 48.66 2GB 21.17 46.91 158MB 17.37 45.01 12MB 14.79 43.72 2MB
12 21.67 49.16 224MB 18.6 47.62 27MB 15.43 46.04 3MB 13.4 45.03 1MB
16 18.82 49.74 31MB 16.21 48.43 6MB 13.74 47.2 1MB 12.23 46.44 1MB
20 16.03 50.34 5MB 13.97 49.31 2MB 12.2 48.43 1MB 11.18 47.92 1MB
24 13.54 51.1 1MB 12.11 50.38 1MB 10.86 49.75 1MB 10.04 49.35 1MB
28 11.03 51.84 1MB 10.28 51.47 1MB 9.69 51.17 1MB 9.33 50.99 1MB
32 8.56 52.6 1MB 8.56 52.6 1MB 8.56 52.6 1MB 8.56 52.6 1MB

r = 6 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 15.12 39.88 3MB 13.05 38.85 1MB 11.73 38.19 1MB 10.91 37.78 1MB
4 14.05 41.35 2MB 12.44 40.55 1MB 11.39 40.02 1MB 10.7 39.68 1MB
8 12.92 42.79 1MB 11.73 42.19 1MB 10.95 41.8 1MB 10.44 41.54 1MB
12 12.01 44.33 1MB 11.14 43.9 1MB 10.57 43.61 1MB 10.2 43.42 1MB
16 11.25 45.95 1MB 10.64 45.64 1MB 10.24 45.45 1MB 9.98 45.32 1MB
20 10.53 47.59 1MB 10.14 47.39 1MB 9.89 47.27 1MB 9.72 47.19 1MB
24 9.59 49.12 1MB 9.31 48.98 1MB 9.14 48.9 1MB 9.04 48.85 1MB
28 9.09 50.87 1MB 8.93 50.79 1MB 8.82 50.74 1MB 8.73 50.69 1MB
32 8.56 52.6 1MB 8.56 52.6 1MB 8.56 52.6 1MB 8.56 52.6 1MB

r = 7 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 26.82 45.73 8GB 22.2 43.43 323MB 17.02 40.83 9MB 13.4 39.02 1MB
4 24.02 46.34 2GB 19.68 44.16 56MB 15.16 41.9 3MB 12.18 40.41 1MB
8 21.1 46.88 151MB 17.23 44.94 11MB 13.37 43.01 1MB 10.97 41.81 1MB
12 18.32 47.49 22MB 14.96 45.8 3MB 11.82 44.24 1MB 9.98 43.31 1MB
16 15.67 48.16 4MB 12.87 46.76 1MB 10.48 45.56 1MB 9.13 44.89 1MB
20 13.1 48.88 1MB 10.93 47.79 1MB 9.26 46.95 1MB 8.35 46.5 1MB
24 10.82 49.74 1MB 9.32 48.99 1MB 8.15 48.4 1MB 7.43 48.04 1MB
28 8.56 50.6 1MB 7.78 50.22 1MB 7.23 49.94 1MB 6.91 49.78 1MB
32 6.34 51.5 1MB 6.34 51.5 1MB 6.34 51.5 1MB 6.34 51.5 1MB

r = 7 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 10.8 37.73 1MB 9.25 36.95 1MB 8.35 36.5 1MB 7.84 36.25 1MB
4 10.13 39.39 1MB 8.9 38.78 1MB 8.17 38.41 1MB 7.74 38.19 1MB
8 9.42 41.03 1MB 8.5 40.57 1MB 7.94 40.3 1MB 7.61 40.13 1MB
12 8.82 42.74 1MB 8.15 42.4 1MB 7.74 42.19 1MB 7.48 42.07 1MB
16 8.31 44.48 1MB 7.84 44.24 1MB 7.55 44.1 1MB 7.37 44.01 1MB
20 7.82 46.23 1MB 7.51 46.08 1MB 7.32 45.99 1MB 7.21 45.93 1MB
24 7.06 47.86 1MB 6.84 47.75 1MB 6.72 47.69 1MB 6.66 47.65 1MB
28 6.71 49.68 1MB 6.58 49.62 1MB 6.5 49.58 1MB 6.43 49.54 1MB
32 6.34 51.5 1MB 6.34 51.5 1MB 6.34 51.5 1MB 6.34 51.5 1MB
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r = 8 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 23.39 44.02 732MB 18.21 41.43 21MB 12.88 38.76 1MB 9.52 37.09 1MB
4 20.57 44.61 105MB 15.94 42.29 5MB 11.39 40.02 1MB 8.69 38.67 1MB
8 17.91 45.28 17MB 13.77 43.21 1MB 9.99 41.32 1MB 7.86 40.26 1MB
12 15.35 46. 3MB 11.78 44.22 1MB 8.79 42.72 1MB 7.17 41.91 1MB
16 12.91 46.78 1MB 10. 45.32 1MB 7.75 44.2 1MB 6.59 43.62 1MB
20 10.56 47.61 1MB 8.35 46.5 1MB 6.81 45.73 1MB 6.03 45.34 1MB
24 8.49 48.57 1MB 6.97 47.81 1MB 5.91 47.28 1MB 5.29 46.97 1MB
28 6.48 49.56 1MB 5.71 49.18 1MB 5.21 48.93 1MB 4.93 48.79 1MB
32 4.54 50.6 1MB 4.54 50.6 1MB 4.54 50.6 1MB 4.54 50.6 1MB

r = 8 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 7.45 36.05 1MB 6.37 35.51 1MB 5.8 35.23 1MB 5.5 35.08 1MB
4 7.06 37.85 1MB 6.18 37.42 1MB 5.71 37.18 1MB 5.45 37.05 1MB
8 6.63 39.64 1MB 5.96 39.31 1MB 5.6 39.12 1MB 5.39 39.02 1MB
12 6.26 41.46 1MB 5.77 41.21 1MB 5.49 41.07 1MB 5.34 40.99 1MB
16 5.94 43.29 1MB 5.59 43.12 1MB 5.39 43.02 1MB 5.28 42.97 1MB
20 5.61 45.13 1MB 5.38 45.01 1MB 5.25 44.95 1MB 5.18 44.92 1MB
24 5.01 46.83 1MB 4.85 46.75 1MB 4.77 46.71 1MB 4.73 46.69 1MB
28 4.78 48.71 1MB 4.68 48.67 1MB 4.62 48.64 1MB 4.58 48.62 1MB
32 4.54 50.6 1MB 4.54 50.6 1MB 4.54 50.6 1MB 4.54 50.6 1MB

r = 9 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 20.16 42.4 79MB 14.62 39.64 2MB 9.38 37.02 1MB 6.46 35.56 1MB
4 17.56 43.1 13MB 12.63 40.64 1MB 8.26 38.45 1MB 5.93 37.29 1MB
8 15.09 43.87 3MB 10.75 41.7 1MB 7.2 39.92 1MB 5.41 39.03 1MB
12 12.73 44.69 1MB 9.06 42.86 1MB 6.3 41.47 1MB 4.96 40.81 1MB
16 10.51 45.58 1MB 7.57 44.11 1MB 5.53 43.09 1MB 4.57 42.61 1MB
20 8.39 46.52 1MB 6.2 45.43 1MB 4.83 44.74 1MB 4.2 44.42 1MB
24 6.53 47.59 1MB 5.05 46.85 1MB 4.12 46.39 1MB 3.63 46.14 1MB
28 4.77 48.71 1MB 4.05 48.35 1MB 3.61 48.13 1MB 3.4 48.02 1MB
32 3.14 49.9 1MB 3.14 49.9 1MB 3.14 49.9 1MB 3.14 49.9 1MB

r = 9 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 4.95 34.8 1MB 4.25 34.45 1MB 3.92 34.28 1MB 3.76 34.21 1MB
4 4.73 36.69 1MB 4.15 36.4 1MB 3.87 36.26 1MB 3.74 36.2 1MB
8 4.49 38.57 1MB 4.04 38.35 1MB 3.82 38.24 1MB 3.72 38.18 1MB
12 4.28 40.47 1MB 3.94 40.3 1MB 3.78 40.21 1MB 3.69 40.17 1MB
16 4.09 42.37 1MB 3.85 42.25 1MB 3.73 42.19 1MB 3.67 42.16 1MB
20 3.88 44.27 1MB 3.72 44.19 1MB 3.64 44.15 1MB 3.6 44.13 1MB
24 3.42 46.04 1MB 3.32 45.99 1MB 3.27 45.96 1MB 3.25 45.95 1MB
28 3.28 47.97 1MB 3.21 47.93 1MB 3.18 47.92 1MB 3.16 47.9 1MB
32 3.14 49.9 1MB 3.14 49.9 1MB 3.14 49.9 1MB 3.14 49.9 1MB
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r = 10 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 17.28 40.97 11MB 11.47 38.06 1MB 6.54 35.6 1MB 4.18 34.42 1MB
4 14.87 41.76 3MB 9.77 39.21 1MB 5.73 37.19 1MB 3.87 36.26 1MB
8 12.6 42.63 1MB 8.18 40.42 1MB 4.97 38.81 1MB 3.56 38.11 1MB
12 10.45 43.55 1MB 6.79 41.72 1MB 4.34 40.49 1MB 3.3 39.97 1MB
16 8.45 44.55 1MB 5.57 43.11 1MB 3.8 42.22 1MB 3.06 41.86 1MB
20 6.56 45.61 1MB 4.48 44.56 1MB 3.31 43.98 1MB 2.83 43.74 1MB
24 4.92 46.79 1MB 3.53 46.09 1MB 2.78 45.71 1MB 2.42 45.53 1MB
28 3.44 48.04 1MB 2.78 47.72 1MB 2.44 47.54 1MB 2.28 47.47 1MB
32 2.13 49.39 1MB 2.13 49.39 1MB 2.13 49.39 1MB 2.13 49.39 1MB

r = 10 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 3.17 33.91 1MB 2.77 33.71 1MB 2.6 33.62 1MB 2.53 33.59 1MB
4 3.06 35.85 1MB 2.72 35.69 1MB 2.58 35.62 1MB 2.52 35.59 1MB
8 2.94 37.8 1MB 2.68 37.66 1MB 2.56 37.61 1MB 2.51 37.58 1MB
12 2.83 39.74 1MB 2.63 39.64 1MB 2.54 39.6 1MB 2.5 39.58 1MB
16 2.73 41.69 1MB 2.59 41.62 1MB 2.52 41.59 1MB 2.49 41.57 1MB
20 2.61 43.63 1MB 2.51 43.58 1MB 2.47 43.56 1MB 2.45 43.55 1MB
24 2.28 45.47 1MB 2.22 45.44 1MB 2.2 45.42 1MB 2.19 45.42 1MB
28 2.2 47.43 1MB 2.16 47.41 1MB 2.15 47.4 1MB 2.14 47.39 1MB
32 2.13 49.39 1MB 2.13 49.39 1MB 2.13 49.39 1MB 2.13 49.39 1MB

r = 11 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 14.72 39.68 2MB 8.77 36.71 1MB 4.34 34.5 1MB 2.61 33.63 1MB
4 12.5 40.58 1MB 7.36 38. 1MB 3.8 36.23 1MB 2.45 35.55 1MB
8 10.43 41.54 1MB 6.06 39.36 1MB 3.3 37.98 1MB 2.29 37.47 1MB
12 8.49 42.57 1MB 4.94 40.8 1MB 2.89 39.77 1MB 2.15 39.4 1MB
16 6.7 43.68 1MB 3.98 42.32 1MB 2.54 41.59 1MB 2.02 41.34 1MB
20 5.06 44.86 1MB 3.15 43.9 1MB 2.22 43.44 1MB 1.89 43.27 1MB
24 3.64 46.15 1MB 2.42 45.54 1MB 1.86 45.25 1MB 1.63 45.14 1MB
28 2.44 47.54 1MB 1.91 47.28 1MB 1.66 47.16 1MB 1.56 47.11 1MB
32 1.49 49.07 1MB 1.49 49.07 1MB 1.49 49.07 1MB 1.49 49.07 1MB

r = 11 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 2.02 33.33 1MB 1.82 33.24 1MB 1.75 33.2 1MB 1.73 33.19 1MB
4 1.97 35.31 1MB 1.81 35.23 1MB 1.75 35.2 1MB 1.72 35.19 1MB
8 1.92 37.29 1MB 1.79 37.22 1MB 1.74 37.2 1MB 1.72 37.19 1MB
12 1.87 39.26 1MB 1.77 39.21 1MB 1.73 39.19 1MB 1.72 39.19 1MB
16 1.83 41.24 1MB 1.75 41.2 1MB 1.73 41.19 1MB 1.72 41.18 1MB
20 1.76 43.21 1MB 1.71 43.18 1MB 1.7 43.17 1MB 1.69 43.17 1MB
24 1.55 45.1 1MB 1.52 45.09 1MB 1.52 45.08 1MB 1.51 45.08 1MB
28 1.52 47.09 1MB 1.5 47.08 1MB 1.49 47.07 1MB 1.49 47.07 1MB
32 1.49 49.07 1MB 1.49 49.07 1MB 1.49 49.07 1MB 1.49 49.07 1MB
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r = 12 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 12.45 38.55 1MB 6.53 35.59 1MB 2.78 33.71 1MB 1.66 33.16 1MB
4 10.43 39.54 1MB 5.39 37.02 1MB 2.45 35.55 1MB 1.59 35.12 1MB
8 8.55 40.6 1MB 4.37 38.51 1MB 2.15 37.4 1MB 1.52 37.09 1MB
12 6.81 41.73 1MB 3.51 40.08 1MB 1.91 39.28 1MB 1.46 39.06 1MB
16 5.24 42.95 1MB 2.8 41.72 1MB 1.71 41.18 1MB 1.41 41.03 1MB
20 3.85 44.25 1MB 2.2 43.43 1MB 1.54 43.09 1MB 1.35 43. 1MB
24 2.66 45.66 1MB 1.69 45.17 1MB 1.32 44.98 1MB 1.2 44.93 1MB
28 1.75 47.2 1MB 1.37 47.01 1MB 1.23 46.94 1MB 1.18 46.92 1MB
32 1.15 48.9 1MB 1.15 48.9 1MB 1.15 48.9 1MB 1.15 48.9 1MB

r = 12 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 1.38 33.02 1MB 1.3 32.98 1MB 1.28 32.97 1MB 1.28 32.96 1MB
4 1.36 35.01 1MB 1.3 34.98 1MB 1.28 34.97 1MB 1.28 34.96 1MB
8 1.35 37. 1MB 1.3 36.97 1MB 1.28 36.97 1MB 1.28 36.96 1MB
12 1.33 38.99 1MB 1.29 38.97 1MB 1.28 38.96 1MB 1.27 38.96 1MB
16 1.31 40.98 1MB 1.29 40.97 1MB 1.28 40.96 1MB 1.27 40.96 1MB
20 1.29 42.97 1MB 1.27 42.96 1MB 1.26 42.96 1MB 1.26 42.95 1MB
24 1.17 44.91 1MB 1.16 44.91 1MB 1.16 44.91 1MB 1.16 44.91 1MB
28 1.16 46.91 1MB 1.16 46.9 1MB 1.15 46.9 1MB 1.15 46.9 1MB
32 1.15 48.9 1MB 1.15 48.9 1MB 1.15 48.9 1MB 1.15 48.9 1MB

r = 13 w = 0 w = 1 w = 2 w = 3

k p Ctr M p Ctr M p Ctr M p Ctr M

0 10.45 37.55 1MB 4.73 34.69 1MB 1.78 33.22 1MB 1.2 32.93 1MB
4 8.62 38.64 1MB 3.86 36.26 1MB 1.62 35.13 1MB 1.18 34.91 1MB
8 6.93 39.79 1MB 3.09 37.87 1MB 1.47 37.06 1MB 1.15 36.9 1MB
12 5.41 41.03 1MB 2.47 39.56 1MB 1.35 39. 1MB 1.13 38.89 1MB
16 4.06 42.35 1MB 1.98 41.31 1MB 1.26 40.95 1MB 1.12 40.88 1MB
20 2.91 43.78 1MB 1.59 43.12 1MB 1.18 42.92 1MB 1.1 42.87 1MB
24 1.96 45.31 1MB 1.27 44.96 1MB 1.08 44.87 1MB 1.04 44.85 1MB
28 1.33 46.99 1MB 1.11 46.88 1MB 1.05 46.85 1MB 1.03 46.84 1MB
32 1.03 48.84 1MB 1.03 48.84 1MB 1.03 48.84 1MB 1.03 48.84 1MB

r = 13 w = 4 w = 5 w = 6 w = 7

k p Ctr M p Ctr M p Ctr M p Ctr M

0 1.1 32.88 1MB 1.08 32.87 1MB 1.08 32.86 1MB 1.08 32.86 1MB
4 1.1 34.87 1MB 1.08 34.87 1MB 1.08 34.86 1MB 1.08 34.86 1MB
8 1.09 36.87 1MB 1.08 36.87 1MB 1.08 36.86 1MB 1.08 36.86 1MB
12 1.09 38.87 1MB 1.08 38.87 1MB 1.08 38.86 1MB 1.08 38.86 1MB
16 1.09 40.87 1MB 1.08 40.86 1MB 1.08 40.86 1MB 1.08 40.86 1MB
20 1.08 42.86 1MB 1.07 42.86 1MB 1.07 42.86 1MB 1.07 42.86 1MB
24 1.03 44.84 1MB 1.03 44.84 1MB 1.03 44.84 1MB 1.03 44.84 1MB
28 1.03 46.84 1MB 1.03 46.84 1MB 1.03 46.84 1MB 1.03 46.84 1MB
32 1.03 48.84 1MB 1.03 48.84 1MB 1.03 48.84 1MB 1.03 48.84 1MB
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